|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn932289263 |
003 |
OCoLC |
005 |
20231120112043.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
151216s2016 ne a ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d N$T
|d YDXCP
|d OCLCF
|d CDX
|d UIU
|d EBLCP
|d NLE
|d KNOVL
|d OTZ
|d COO
|d UAB
|d B24X7
|d OCLCQ
|d K6U
|d D6H
|d U3W
|d OCLCQ
|d AU@
|d WYU
|d OCLCA
|d MERER
|d OCLCO
|d OCLCA
|d OCLCQ
|d OCLCA
|d LQU
|d OCLCQ
|d S2H
|d OCLCO
|d VT2
|d OCLCO
|d OCL
|d OCLCQ
|d UPM
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 932825393
|a 948810916
|a 1066447327
|a 1105192094
|a 1105575158
|a 1235839125
|
020 |
|
|
|a 9780128026762
|q (electronic bk.)
|
020 |
|
|
|a 0128026766
|q (electronic bk.)
|
020 |
|
|
|z 9780128025819
|
020 |
|
|
|z 0128025816
|
035 |
|
|
|a (OCoLC)932289263
|z (OCoLC)932825393
|z (OCoLC)948810916
|z (OCoLC)1066447327
|z (OCoLC)1105192094
|z (OCoLC)1105575158
|z (OCoLC)1235839125
|
050 |
|
4 |
|a R857.O6
|
060 |
|
4 |
|a 2016 B-558
|
060 |
|
4 |
|a WN 26.5
|
072 |
|
7 |
|a HEA
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 022000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 112000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 045000
|2 bisacsh
|
082 |
0 |
4 |
|a 616.0754
|2 23
|
245 |
0 |
0 |
|a Medical image recognition, segmentation and parsing :
|b machine learning and multiple object approaches /
|c edited by S. Kevin Zhou.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c [2016]
|
264 |
|
4 |
|c �2016
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a The Elsevier and MICCAI society book series
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed December 18, 2015)
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of-the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. You will learn how to: research challenges and problems in medical image recognition, segmentation and parsing of multiple objects; methods and theories for medical image recognition, segmentation and parsing of multiple objects; efficient and effective machine learning solutions based on big datasets; selected applications of medical image parsing using proven algorithms. --
|c Edited summary from book.
|
505 |
0 |
|
|a Front Cover; Medical Image Recognition, Segmentation and Parsing: Machine Learning and Multiple Object Approaches; Copyright; Contents; Foreword; Acknowledgments; Contributors; Chapter 1: Introduction to Medical Image Recognition; 1.1 Introduction; 1.2 Challenges and Opportunities; 1.3 Rough-to-Exact Object Representation; 1.4 Simple-to-Complex Probabilistic Modeling; 1.4.1 Chain Rule; 1.4.2 Bayes' Rule and the Equivalence of Probabilistic Modelingand Energy-Based Method; 1.4.3 Practical Medical Image Recognition, Segmentation, and Parsing Algorithms.
|
505 |
8 |
|
|a 1.5 Medical Image Recognition Using Machine Learning Methods1.5.1 Object Detection and Context; 1.5.2 Machine Learning Methods; 1.5.2.1 Classification; 1.5.2.2 Regression; 1.6 Medical Image Segmentation Methods; 1.6.1 Simple Image Segmentation Methods; 1.6.2 Active Contour Method; 1.6.3 Variational Methods; 1.6.4 Level Set Methods; 1.6.5 Active Shape Models and Active Appearance Models; 1.6.6 Graph Cut Method; 1.7 Conclusions; Recommended Notations; Notes; References; Part 1: AutomaticRecognition and DetectionAlgorithms; Chapter 2: A Survey of Anatomy Detection; 2.1 Introduction.
|
505 |
8 |
|
|a 2.2 Methods for Detecting an Anatomy2.2.1 Classification-Based Detection Methods; 2.2.1.1 Boosting detection cascade; 2.2.1.2 Probabilistic boosting tree; 2.2.1.3 Randomized decision forest; 2.2.1.4 Exhaustive search to handle pose variation; 2.2.1.5 Parallel, pyramid, and tree structures; 2.2.1.6 Network structure: Probabilistic boosting network; 2.2.1.7 Marginal space learning; 2.2.1.8 Probabilistic, hierarchical, and discriminant framework; 2.2.1.9 Multiple instance boosting to handle inaccurate annotation; 2.2.2 Regression-Based Detection Methods; 2.2.2.1 Shape regression machine.
|
505 |
8 |
|
|a 2.2.2.2 Hough forest2.2.3 Classification-Based vs Regression-Based Object Detection; 2.3 Methods for Detecting Multiple Anatomies; 2.3.1 Classification-Based Methods; 2.3.1.1 Discriminative anatomical network; 2.3.1.2 Active scheduling; 2.3.1.3 Submodular detection; 2.3.1.4 Integrated detection network; 2.3.2 Regression-Based Method: Regression Forest; 2.3.3 Combining Classification and Regression: Context Integration; 2.4 Conclusions; References; Chapter 3: Robust Multi-Landmark Detection Based on Information Theoretic Scheduling; 3.1 Introduction; 3.2 Literature Review; 3.3 Methods.
|
505 |
8 |
|
|a 3.3.1 Problem Statement3.3.2 Scheduling Criterion Based on Information Gain; 3.3.3 Monte-Carlo Simulation Method for the Evaluation of Information Gain; 3.3.4 Implementation; Learning-based landmark detection; Spatial correlation across landmarks; 3.4 Applications; 3.4.1 Automatic View Identification of Radiographs; 3.4.2 Auto-Alignment for MR Knee Scan Planning; 3.4.3 Auto-Navigation for Anatomical Measurement in CT; 3.4.4 Automatic Vertebrae Labeling; 3.4.5 Virtual Attenuation Correction of Brain PET Images; 3.4.6 Bone Segmentation in MR for PET-MR Attenuation Correction; 3.5 Conclusion.
|
650 |
|
0 |
|a Imaging systems in medicine.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Image reconstruction.
|
650 |
|
0 |
|a Pattern recognition systems.
|
650 |
1 |
2 |
|a Image Processing, Computer-Assisted
|0 (DNLM)D007091
|
650 |
2 |
2 |
|a Image Interpretation, Computer-Assisted
|0 (DNLM)D007090
|
650 |
2 |
2 |
|a Diagnostic Imaging
|x methods
|0 (DNLM)D003952Q000379
|
650 |
2 |
2 |
|a Machine Learning
|0 (DNLM)D000069550
|
650 |
2 |
2 |
|a Pattern Recognition, Automated
|0 (DNLM)D010363
|
650 |
|
6 |
|a Imagerie m�edicale.
|0 (CaQQLa)201-0081004
|
650 |
|
6 |
|a Apprentissage automatique.
|0 (CaQQLa)201-0131435
|
650 |
|
6 |
|a Reconstruction d'image.
|0 (CaQQLa)201-0246129
|
650 |
|
6 |
|a Reconnaissance des formes (Informatique)
|0 (CaQQLa)201-0028094
|
650 |
|
7 |
|a HEALTH & FITNESS
|x Diseases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Clinical Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Diseases.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Evidence-Based Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Internal Medicine.
|2 bisacsh
|
650 |
|
7 |
|a Pattern recognition systems
|2 fast
|0 (OCoLC)fst01055266
|
650 |
|
7 |
|a Image reconstruction
|2 fast
|0 (OCoLC)fst00967534
|
650 |
|
7 |
|a Imaging systems in medicine
|2 fast
|0 (OCoLC)fst00967628
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
700 |
1 |
|
|a Zhou, S. Kevin,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|z 0128025816
|z 9780128025819
|w (OCoLC)919014709
|
830 |
|
0 |
|a Elsevier and MICCAI Society book series.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128025819
|z Texto completo
|