|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn932063208 |
003 |
OCoLC |
005 |
20231120112042.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
150812s2015 ne ob 001 0 eng d |
040 |
|
|
|a NLE
|b eng
|e rda
|e pn
|c NLE
|d OCLCO
|d OCLCQ
|d OCLCF
|d EBLCP
|d OPELS
|d U3W
|d D6H
|d OCLCQ
|d WYU
|d CUY
|d ZCU
|d MERUC
|d ICG
|d VT2
|d DKC
|d OCLCQ
|d LQU
|d ABC
|d OCLCQ
|d UKMGB
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB5C2248
|2 bnb
|
016 |
7 |
|
|a 017534451
|2 Uk
|
019 |
|
|
|a 932332309
|a 1105197699
|a 1105564252
|
020 |
|
|
|a 9780081005958
|q (electronic bk.)
|
020 |
|
|
|a 0081005954
|q (electronic bk.)
|
020 |
|
|
|a 0081005946
|q (Trade Cloth)
|
020 |
|
|
|a 9780081005941
|
020 |
|
|
|z 9780081005941
|q (hbk.)
|
024 |
3 |
|
|a 9780081005941
|
035 |
|
|
|a (OCoLC)932063208
|z (OCoLC)932332309
|z (OCoLC)1105197699
|z (OCoLC)1105564252
|
050 |
|
4 |
|a QA276
|
082 |
0 |
4 |
|a 001.422
|2 23
|
100 |
1 |
|
|a Singh, Sarjinder,
|d 1963-
|e author.
|
245 |
1 |
2 |
|a A new concept for tuning design weights in survey sampling :
|b jackknifing in theory and practice /
|c Sarjinder Singh, Stephen Sedory, Maria del Mar Rueda, Antonio Arcos, Raghunath Arnab.
|
264 |
|
1 |
|a Amsterdam :
|b Academic Press,
|c 2015.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a CIP data; item not viewed.
|
505 |
0 |
|
|a Front Cover; A New Concept for Tuning Design Weights in Survey Sampling: Jackknifing in Theory and Practice; Copyright; Dedication; Contents; Preface; Further studies; Acknowledgments; Chapter 1: Problem of estimation; 1.1. Introduction; 1.2. Estimation problem and notation; 1.3. Modeling of jumbo pumpkins; 1.3.1. R code; 1.4. The concept of jackknifing; 1.5. Jackknifing the sample mean; 1.6. Doubly jackknifed sample mean; 1.7. Jackknifing a sample proportion; 1.8. Jackknifing of a double suffix variable sum; 1.9. Frequently asked questions; 1.10. Exercises.
|
505 |
8 |
|
|a Chapter 2: Tuning of jackknife estimator2.1. Introduction; 2.2. Notation; 2.3. Tuning with a chi-square type distance function; 2.3.1. Problem of undercoverage; 2.3.2. Estimation of variance and coverage; 2.3.3. R code; 2.3.4. Remark on tuning with a chi-square distance; 2.3.5. Numerical illustration; 2.3.6. R code used for illustration; 2.3.7. Problem of negative weights; 2.4. Tuning with dell function; 2.4.1. Estimation of variance and coverage; 2.4.2. R code; 2.4.3. Numerical illustration; 2.4.4. R code used for illustration; 2.5. An important remark; 2.6. Exercises.
|
505 |
8 |
|
|a Chapter 3: Model assisted tuning of estimators3.1. Introduction; 3.2. Model assisted tuning with a chi-square distance function; 3.2.1. Estimation of variance and coverage; 3.2.2. R code; 3.3. Model assisted tuning with a dual-to-empirical log-likelihood (dell) function; 3.3.1. Estimation of variance and coverage; 3.3.2. R code; 3.4. Exercises; Chapter 4: Tuned estimators of finite population variance; 4.1. Introduction; 4.2. Tuned estimator of finite population variance; 4.3. Tuning with a chi-square distance; 4.3.1. Estimation of variance of the estimator of variance and coverage.
|
505 |
8 |
|
|a 4.3.2. R code4.3.3. Remark on tuning with a chi-square distance; 4.3.4. Numerical illustration; 4.3.5. R code used for illustration; 4.3.6. F-distribution; 4.4. Tuning of estimator of finite population variance with a dual-to-empirical log-likelihood (dell) function; 4.4.1. Estimation of variance and coverage; 4.4.2. R code; 4.4.3. Numerical illustration; 4.4.4. R code used for illustration; 4.5. Alternative tuning with a chi-square distance; 4.5.1. Estimation of variance and coverage; 4.5.2. R code; 4.5.3. Numerical illustration; 4.5.4. R code used for illustration.
|
505 |
8 |
|
|a 4.6. Alternative tuning with a dell function4.6.1. Estimation of variance and coverage; 4.6.2. R code; 4.6.3. Numerical illustration; 4.6.4. R code used for illustration; 4.7. Exercises; Chapter 5: Tuned estimators of correlation coefficient; 5.1. Introduction; 5.2. Correlation coefficient; 5.3. Tuned estimator of correlation coefficient; 5.3.1. Estimation of variance of the estimator of correlation coefficient and coverage; 5.3.2. R code; 5.3.3. Numerical illustration; 5.3.4. R code used for illustration; 5.4. Exercises; Chapter 6: Tuning of multicharacter survey estimators.
|
520 |
|
|
|a A New Concept for Tuning Design Weights in Survey Sampling: Jackknifing in Theory and Practice introduces the new concept of tuning design weights in survey sampling by presenting three concepts: calibration, jackknifing, and imputing where needed. This new methodology allows survey statisticians to develop statistical software for analyzing data in a more precisely and friendly way than with existing techniques.
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
650 |
|
0 |
|a Sampling (Statistics)
|
650 |
|
6 |
|a �Echantillonnage (Statistique)
|0 (CaQQLa)201-0002590
|
650 |
|
7 |
|a Sampling (Statistics)
|2 fast
|0 (OCoLC)fst01104676
|
700 |
1 |
|
|a Sedory, Stephen A.,
|d 1950-
|e author.
|
700 |
1 |
|
|a Rueda Garc�ia, Maria del Mar,
|e author.
|
700 |
1 |
|
|a Arcos Cebri�an, Antonio,
|e author.
|
700 |
1 |
|
|a Arnab, Raghunath,
|e author.
|
776 |
0 |
8 |
|i Print version:
|z 9780081005941
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780081005941
|z Texto completo
|