Cargando…

Analysis of failures of embedded mechatronic systems. Volume 2, Modeling, simulation and optimization /

In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative pro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: El Hami, Abdelkhalak (Autor), Pougnet, Philippe (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Embedded Mechatronic Systems; Copyright; Contents; Preface; Chapter 1: Highly Accelerated Testing; 1.1. Introduction; 1.2. Load Characteristics of the Super HAT Equipment; 1.3. Description of the Super HAT system; 1.4. Application; 1.5. Conclusion; 1.6. Bibliography; Chapter 2: Aging Power Transistors in Operational Conditions; 2.1. Introduction; 2.2. Aging Microwave Power Electronic Components Under Operational Conditions; 2.3. Application to the Study of Microwave Power Transistors; 2.4. Conclusion; 2.5. Bibliography; Chapter 3: Physical Defects Analysis of Mechatronic Systems.
  • 3.1. Introduction3.2. Equipment and Methodology for Analyzing Failure in Mechatronic Systems; 3.3. Analysis of Physical Defects; 3.4. Conclusion; 3.5. Bibliography; Chapter 4: Impact of Voids in Interconnection Materials; 4.1. Introduction; 4.2. Thermal Transfer and Thermo-Elasticity; 4.3. Description of the Numerical Method; 4.4. Simulation of Thermal and Thermomechanical Effects in the Interconnection Material of an Electronic Module; 4.5. Conclusion; 4.6. Bibliography; Chapter 5: Electro-Thermo-Mechanical Modeling; 5.1. Introduction; 5.2. Theory of Electro-Thermo-Mechanical Coupling.
  • 5.3. Simulation of Electro-Thermo-Mechanical Behavior Using the Finite Element Method5.4. Example of an Electro-Thermo-Mechanical Simulation of an HBT Transistor; 5.5. Modal Analysis of Mechanical Components; 5.6. Stochastic Modal Analysis of Structures; 5.7. Numerical Identification of the Elastic Parameters of Electronic Components; 5.8. Example of Modeling and Simulation of the Vibratory Behavior of Mechatronic Components; 5.9. Conclusion; 5.10. Lists of Abbreviations and Symbols; 5.11. Bibliography; Chapter 6: Meta-Model Development; 6.1. Introduction; 6.2. Definition of a Meta-Model.
  • 6.3. Selection of Factors: Screening6.4. Creation of a Design of Experiment; 6.5. Modeling of the Response Surface: PLS Regression and Kriging; 6.6. Sensitivity Analysis of the Model: Variance Decomposition and Sobol Criterion; 6.7. Robust Design; 6.8. Conclusion; 6.9. Bibliography; Chapter 7: Optimizing Reliability of Electronic Systems; 7.1. Introduction; 7.2. Probabilistic and Multi-Physics Modeling; 7.3. Reliability-Based Optimization Methodology; 7.4. Reliability-Based Optimization of Material Layers of Heterojunction Bipolar Technology (HBT) Power Modules; 7.5. Conclusion.
  • 7.6. BibliographyChapter 8: High-Efficiency Architecture for Power Amplifiers; 8.1. Introduction; 8.2. Main Reliability Parameters; 8.3. Methodology; 8.4. Aging Tests; 8.5. Other Results; 8.6. Origin of Degradations: Discussion; 8.7. Physical Analysis; 8.8. Amplifier Design Rules; 8.9. Conclusion; 8.10. Bibliography; List of Authors; Index; Summary of Volume 1.