Neutron scattering -- magnetic and quantum phenomena /
Neutron Scattering - Magnetic and Quantum Phenomena provides detailed coverage of the application of neutron scattering in condensed matter research. The book's primary aim is to enable researchers in a particular area to identify the aspects of their work where neutron scattering techniques mi...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Academic Press is an imprint of Elsevier,
2015.
|
Colección: | Experimental methods in the physical sciences ;
v. 48. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Front Cover; Experimental Methods in the Physical Sciences; Neutron Scattering
- Magnetic and Quantum Phenomena; Copyright; Contents; List of Contributors; Volumes in Series; Preface; REFERENCES; Eulogy; Symbols; REFERENCE; 1
- Neutron Optics and Spin Labeling Methods; 1.1 INTRODUCTION; 1.2 PARTICLE PROPERTIES AND INTERACTIONS OF SLOW NEUTRONS; 1.3 NEUTRON STATES AND WAVE FUNCTIONS; 1.3.1 Wave versus Geometrical Optics in Neutron Scattering Experiments; 1.3.2 Summary of High Precision Rules for Neutron Beam Propagation; 1.4 THE PRINCIPLES OF SPIN LABELING; 1.4.1 Practical Spin Labeling.
- 1.4.2 Choices of Neutron Parameters for Spin Labeling1.5 NEUTRON SPIN-ECHO SPECTROSCOPY; 1.5.1 NSE Spectroscopy for Nuclear Scattering; 1.5.2 NSE Spectroscopy in Magnetism; 1.6 NEUTRON SPIN-ECHO FOR ELASTIC SCATTERING AT SMALL ANGLES; 1.6.1 Neutron Beam Polarizers and Analyzers; 1.6.2 Transport of Polarized Neutron Beams and Spin-Injection Devices; 1.6.3 Precession Region and Magnetic Shielding; 1.6.4 Experimental Results; 1.6.4.1 Spin-Echo Small-Angle Scattering; 1.6.4.2 Spin-Echo Reflectometry; REFERENCES; 2
- Quantum Phase Transitions; 2.1 INTRODUCTION; 2.1.1 Classical Phase Transitions.
- 2.1.2 Continuous Phase Transitions and Critical Behavior2.1.3 Quantum Critical Scaling; 2.1.4 Quantum Critical Point; 2.1.5 Quantum Critical Region; 2.2 EXPERIMENTAL TECHNIQUES; 2.2.1 General Principles of Neutron Scattering; 2.2.2 Neutron Scattering Cross Sections; 2.2.3 Correlation and Scattering Functions; 2.2.4 Magnetic Cross Section; 2.2.5 Instruments; 2.2.5.1 Triple-Axis Spectrometers; 2.2.5.2 Time-of-Flight Spectrometers; 2.3 EXTREME ENVIRONMENTAL CONDITIONS; 2.3.1 Cryogenics; 2.3.1.1 Helium Closed-Cycle Refrigerator; 2.3.1.2 Liquid Helium Bath Cryostats; 2.3.1.3 Cryogen-Free Systems.
- 2.3.1.4 Helium-3 Sorption System2.3.1.5 Helium-3/Helium-4 Dilution Refrigerators; 2.3.2 High Magnetic Field; 2.3.3 High Pressure; 2.3.3.1 Hydrostatic Cells (Piston-Cylinder Devices); 2.3.3.2 Large-Volume (Clamped) Cells; 2.3.3.3 Opposed Anvil Cells; 2.4 QUANTUM PHASE TRANSITIONS IN SPIN DIMER SYSTEMS; 2.4.1 Spin Dimer Systems; 2.4.2 TlCuCl3; 2.4.3 Field-Induced QPT in TlCuCl3; 2.4.4 Pressure-Induced QPT in TlCuCl3; 2.5 QUANTUM PHASE TRANSITIONS IN JEFF=1/2 PYROCHLORE MAGNETS; 2.5.1 XY Pyrochlore Magnets; 2.5.2 Er2Ti2O7; 2.5.3 Spin Excitations in Er2Ti2O7; 2.5.4 Yb2Ti2O7.
- 2.5.5 Spin Excitations in Yb2Ti2O72.6 QUANTUM PHASE TRANSITIONS IN HEAVY FERMIONS; 2.6.1 Heavy Fermions; 2.6.1.1 Spin-Density-Wave QC at a Conventional QCP [100]; 2.6.1.2 Local QC; 2.6.2 Cerium-Based Heavy-Fermion System; 2.6.3 CeCu6-xAux; 2.6.3.1 Chemical Pressure (Doping); 2.6.3.2 Applied Pressure; 2.6.3.3 Applied Magnetic Field; 2.6.4 CeT(In1-xMx)5; 2.6.5 CeRhIn5; 2.6.6 CeCoIn5; 2.6.7 CeIrIn5; 2.7 QUANTUM PHASE TRANSITIONS IN ITINERANT MAGNETS; 2.7.1 Weak Itinerant Ferromagnets; 2.7.2 MnSi; 2.7.2.1 Applied Pressure; 2.7.3 URu2Si2; 2.7.3.1 Chemical Pressure (Doping).