|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn930600936 |
003 |
OCoLC |
005 |
20231120112038.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
151130s2016 ne ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d YDXCP
|d OCLCF
|d EBLCP
|d OPELS
|d IDEBK
|d DEBSZ
|d IDB
|d VGM
|d OCLCQ
|d U3W
|d MERUC
|d D6H
|d OCLCQ
|d CUY
|d LOA
|d ZCU
|d ICG
|d COCUF
|d DKC
|d OCLCQ
|d LQU
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 931157416
|a 932332611
|a 1105169011
|a 1105564939
|a 1151736136
|
020 |
|
|
|a 9780128046692
|q (electronic bk.)
|
020 |
|
|
|a 0128046694
|q (electronic bk.)
|
020 |
|
|
|z 9780128046289
|
020 |
|
|
|z 0128046287
|
035 |
|
|
|a (OCoLC)930600936
|z (OCoLC)931157416
|z (OCoLC)932332611
|z (OCoLC)1105169011
|z (OCoLC)1105564939
|z (OCoLC)1151736136
|
050 |
|
4 |
|a QC20.7.D5
|
072 |
|
7 |
|a SCI
|x 024000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 055000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.15/5355
|2 23
|
100 |
1 |
|
|a Jangveladze, Temur,
|e author.
|
245 |
1 |
0 |
|a Numerical solutions of three classes of nonlinear parabolic integro-differential equations /
|c Temur Jangveladze, Zurab Kiguradze, Beny Neta.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c [2016]
|
264 |
|
4 |
|c �2016
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed December 3, 2015).
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Title page; Table of Contents; Copyright; Preface; Acknowledgments; Abstract; Chapter 1: Introduction; Abstract; 1.1 Comments and bibliographical notes; Chapter 2: Mathematical Modeling; Abstract; 2.1 Electromagnetic diffusion process; 2.2 On the averaged Model II; 2.3 Mathematical Model III; 2.4 Some features of Models I and II; 2.5 Some features of Model III; 2.6 Comments and bibliographical notes; 2.2 On the averaged Model II; 2.3 Mathematical Model III; 2.5 Some features of Model III; Chapter 3: Approximate Solutions of the Integro-Differential Models; Abstract.
|
505 |
8 |
|
|a 3.1 Semi-discrete scheme for Model I3.2 Finite difference scheme for Model I; 3.3 Semi-discrete scheme for Model II; 3.4 Finite difference scheme for Model II; 3.5 Discrete analogues of Model III; 3.6 Galerkin's method for Model I; 3.7 Galerkin's method for Model II; 3.8 Galerkin's method for Model III; 3.9 Comments and bibliographical notes; 3.1 Semi-discrete scheme for Model I; 3.2 Finite difference scheme for Model I; 3.3 Semi-discrete scheme for Model II; 3.4 Finite difference scheme for Model II; 3.5 Deserete analogues of Model III; 3.6 Galerkin's method for Model I.
|
505 |
8 |
|
|a 3.7 Galerkin's method for Model II3.8 Galerkin's method for Model III; Chapter 4: Numerical Realization of the Discrete Analogous for Models I-III; Abstract; 4.1 Finite difference solution of Model I; 4.2 Finite difference solution of Model II; 4.3 Galerkin's solution of Model II; 4.4 Finite difference solution of Model III; 4.5 Comments and bibliographical notes; 4.1 Numerical solution of Model I; 4.2 Numerical solution of Model II; 4.3 Numerical solution of Model III; Bibliography; Index.
|
650 |
|
0 |
|a Differential equations, Nonlinear.
|
650 |
|
0 |
|a Nonlinear theories.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
6 |
|a �Equations diff�erentielles non lin�eaires.
|0 (CaQQLa)201-0041487
|
650 |
|
6 |
|a Th�eories non lin�eaires.
|0 (CaQQLa)201-0031988
|
650 |
|
6 |
|a Physique math�ematique.
|0 (CaQQLa)201-0008394
|
650 |
|
7 |
|a SCIENCE
|x Energy.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Nonlinear
|2 fast
|0 (OCoLC)fst00893474
|
650 |
|
7 |
|a Mathematical physics
|2 fast
|0 (OCoLC)fst01012104
|
650 |
|
7 |
|a Nonlinear theories
|2 fast
|0 (OCoLC)fst01038812
|
700 |
1 |
|
|a Kiguradze, Zurab,
|e author.
|
700 |
1 |
|
|a Neta, Beny,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Jangveladze, Temur.
|t Numerical solutions of three classes of nonlinear parabolic integro-differential equations.
|d Amsterdam : Elsevier, [2016]
|z 9780128046289
|z 0128046287
|w (OCoLC)922911116
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128046289
|z Texto completo
|