|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn927438026 |
003 |
OCoLC |
005 |
20231120112032.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
151104s2015 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d IDEBK
|d OCLCO
|d BTCTA
|d YDXCP
|d CDX
|d EBLCP
|d OCLCO
|d OCLCF
|d OCLCO
|d OPELS
|d OCLCO
|d UIU
|d MERUC
|d IDB
|d VGM
|d OCLCQ
|d U3W
|d WRM
|d D6H
|d CEF
|d EZ9
|d OCLCQ
|d AU@
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 929533336
|
020 |
|
|
|a 9780081008072
|q (electronic bk.)
|
020 |
|
|
|a 0081008074
|q (electronic bk.)
|
020 |
|
|
|z 9781785480126
|
035 |
|
|
|a (OCoLC)927438026
|z (OCoLC)929533336
|
050 |
|
4 |
|a TK5102.5
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.3822
|2 23
|
100 |
1 |
|
|a Cua-S�anchez, Antonio,
|e author.
|
245 |
1 |
0 |
|a Traffic anomaly detection /
|c Antonio Cua-S�anchez, Javier Aracil.
|
264 |
|
1 |
|a London, UK :
|b ISTE, Ltd. ;
|a Kidlington, Oxford, UK :
|b Elsevier,
|c 2015.
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed November 5, 2015).
|
520 |
|
|
|a This book presents an overview of traffic anomaly detection analysis, allowing you to monitor security aspects of multimedia services. The author's approach is based on the analysis of time aggregation adjacent periods of the traffic. As traffic varies throughout the day, it is essential to consider the concrete traffic period in which the anomaly occurs. This book presents the algorithms proposed specifically for this analysis and an empirical comparative analysis of those methods and settle a new information theory based technique, named "typical day analysis."
|
505 |
0 |
|
|a Front Cover -- Traffic Anomaly Detection -- Copyright -- Contents -- Introduction
|
505 |
8 |
|
|a Chapter 1: Introduction to Traffic Anomaly Detection Methods 1.1. Cumulative Sum Control Charts (CUSUM) -- 1.2. Tests of Goodness-of-fit -- 1.3. Mutual Information (MI)
|
505 |
8 |
|
|a Chapter 2: Finding the Optimal Aggregation Period 2.1. Introduction -- 2.2. State of the Art
|
505 |
8 |
|
|a 2.3. Macroscopic Observation of Traffic 2.4. Average-Day Analysis -- 2.5. Conclusion -- Chapter 3: Comparative Analysis of Traffic Anomaly Detection Methods
|
505 |
8 |
|
|a 3.1. Introduction 3.2. State of the Art -- 3.3. Average-Day Preliminary Analysis -- 3.4. Proposed Change Point Detection Algorithms
|
650 |
|
0 |
|a Signal detection
|x Statistical methods.
|
650 |
|
0 |
|a Signal detection
|x Mathematical models.
|
650 |
|
0 |
|a Signal processing
|x Statistical methods.
|
650 |
|
0 |
|a Signal processing
|x Mathematical models.
|
650 |
|
0 |
|a Computer networks.
|
650 |
|
6 |
|a D�etection du signal
|0 (CaQQLa)201-0206682
|x M�ethodes statistiques.
|0 (CaQQLa)201-0373903
|
650 |
|
6 |
|a D�etection du signal
|0 (CaQQLa)201-0206682
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
6 |
|a Traitement du signal
|0 (CaQQLa)201-0032324
|x M�ethodes statistiques.
|0 (CaQQLa)201-0373903
|
650 |
|
6 |
|a Traitement du signal
|0 (CaQQLa)201-0032324
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
6 |
|a R�eseaux d'ordinateurs.
|0 (CaQQLa)201-0007877
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Computer networks
|2 fast
|0 (OCoLC)fst00872297
|
650 |
|
7 |
|a Signal detection
|x Mathematical models
|2 fast
|0 (OCoLC)fst01118269
|
650 |
|
7 |
|a Signal detection
|x Statistical methods
|2 fast
|0 (OCoLC)fst01118270
|
650 |
|
7 |
|a Signal processing
|x Mathematical models
|2 fast
|0 (OCoLC)fst01118301
|
650 |
|
7 |
|a Signal processing
|x Statistical methods
|2 fast
|0 (OCoLC)fst01118304
|
700 |
1 |
|
|a Aracil, Javier,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Cuadra-S�anchez, Antonio.
|t Traffic Anomaly Detection.
|d Kent : Elsevier Science, �2015
|z 9781785480126
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781785480126
|z Texto completo
|