Cargando…

Traffic anomaly detection /

This book presents an overview of traffic anomaly detection analysis, allowing you to monitor security aspects of multimedia services. The author's approach is based on the analysis of time aggregation adjacent periods of the traffic. As traffic varies throughout the day, it is essential to con...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cua-S�anchez, Antonio (Autor), Aracil, Javier (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Kidlington, Oxford, UK : ISTE, Ltd. ; Elsevier, 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn927438026
003 OCoLC
005 20231120112032.0
006 m o d
007 cr cnu|||unuuu
008 151104s2015 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d OCLCO  |d BTCTA  |d YDXCP  |d CDX  |d EBLCP  |d OCLCO  |d OCLCF  |d OCLCO  |d OPELS  |d OCLCO  |d UIU  |d MERUC  |d IDB  |d VGM  |d OCLCQ  |d U3W  |d WRM  |d D6H  |d CEF  |d EZ9  |d OCLCQ  |d AU@  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 929533336 
020 |a 9780081008072  |q (electronic bk.) 
020 |a 0081008074  |q (electronic bk.) 
020 |z 9781785480126 
035 |a (OCoLC)927438026  |z (OCoLC)929533336 
050 4 |a TK5102.5 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.3822  |2 23 
100 1 |a Cua-S�anchez, Antonio,  |e author. 
245 1 0 |a Traffic anomaly detection /  |c Antonio Cua-S�anchez, Javier Aracil. 
264 1 |a London, UK :  |b ISTE, Ltd. ;  |a Kidlington, Oxford, UK :  |b Elsevier,  |c 2015. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed November 5, 2015). 
520 |a This book presents an overview of traffic anomaly detection analysis, allowing you to monitor security aspects of multimedia services. The author's approach is based on the analysis of time aggregation adjacent periods of the traffic. As traffic varies throughout the day, it is essential to consider the concrete traffic period in which the anomaly occurs. This book presents the algorithms proposed specifically for this analysis and an empirical comparative analysis of those methods and settle a new information theory based technique, named "typical day analysis." 
505 0 |a Front Cover -- Traffic Anomaly Detection -- Copyright -- Contents -- Introduction 
505 8 |a Chapter 1: Introduction to Traffic Anomaly Detection Methods 1.1. Cumulative Sum Control Charts (CUSUM) -- 1.2. Tests of Goodness-of-fit -- 1.3. Mutual Information (MI) 
505 8 |a Chapter 2: Finding the Optimal Aggregation Period 2.1. Introduction -- 2.2. State of the Art 
505 8 |a 2.3. Macroscopic Observation of Traffic 2.4. Average-Day Analysis -- 2.5. Conclusion -- Chapter 3: Comparative Analysis of Traffic Anomaly Detection Methods 
505 8 |a 3.1. Introduction 3.2. State of the Art -- 3.3. Average-Day Preliminary Analysis -- 3.4. Proposed Change Point Detection Algorithms 
650 0 |a Signal detection  |x Statistical methods. 
650 0 |a Signal detection  |x Mathematical models. 
650 0 |a Signal processing  |x Statistical methods. 
650 0 |a Signal processing  |x Mathematical models. 
650 0 |a Computer networks. 
650 6 |a D�etection du signal  |0 (CaQQLa)201-0206682  |x M�ethodes statistiques.  |0 (CaQQLa)201-0373903 
650 6 |a D�etection du signal  |0 (CaQQLa)201-0206682  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 6 |a Traitement du signal  |0 (CaQQLa)201-0032324  |x M�ethodes statistiques.  |0 (CaQQLa)201-0373903 
650 6 |a Traitement du signal  |0 (CaQQLa)201-0032324  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 6 |a R�eseaux d'ordinateurs.  |0 (CaQQLa)201-0007877 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Computer networks  |2 fast  |0 (OCoLC)fst00872297 
650 7 |a Signal detection  |x Mathematical models  |2 fast  |0 (OCoLC)fst01118269 
650 7 |a Signal detection  |x Statistical methods  |2 fast  |0 (OCoLC)fst01118270 
650 7 |a Signal processing  |x Mathematical models  |2 fast  |0 (OCoLC)fst01118301 
650 7 |a Signal processing  |x Statistical methods  |2 fast  |0 (OCoLC)fst01118304 
700 1 |a Aracil, Javier,  |e author. 
776 0 8 |i Print version:  |a Cuadra-S�anchez, Antonio.  |t Traffic Anomaly Detection.  |d Kent : Elsevier Science, �2015  |z 9781785480126 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781785480126  |z Texto completo