|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn927160222 |
003 |
OCoLC |
005 |
20231120112031.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
151030s2015 ne a ob 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d N$T
|d YDXCP
|d N$T
|d OCLCO
|d EBLCP
|d OPELS
|d UIU
|d OCLCQ
|d OCLCO
|d CDX
|d KNOVL
|d REB
|d VLB
|d OCLCQ
|d UPM
|d NRC
|d FEM
|d S4S
|d COO
|d UWW
|d VT2
|d OCLCQ
|d U3W
|d UUM
|d DEBBG
|d D6H
|d OCLCF
|d ZCU
|d CEF
|d RRP
|d AU@
|d OCLCQ
|d UKMGB
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|
066 |
|
|
|c (S
|
015 |
|
|
|a GBB5F5038
|2 bnb
|
016 |
7 |
|
|a 017594323
|2 Uk
|
019 |
|
|
|a 932093862
|a 961874321
|a 968111634
|a 968975300
|a 982182253
|a 982244681
|a 987928739
|
020 |
|
|
|a 0128039930
|q (electronic bk.)
|
020 |
|
|
|a 9780128039939
|q (electronic bk.)
|
020 |
|
|
|z 0128039876
|
020 |
|
|
|z 9780128039878
|
035 |
|
|
|a (OCoLC)927160222
|z (OCoLC)932093862
|z (OCoLC)961874321
|z (OCoLC)968111634
|z (OCoLC)968975300
|z (OCoLC)982182253
|z (OCoLC)982244681
|z (OCoLC)987928739
|
050 |
|
4 |
|a TK7871.85
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.38152
|2 23
|
100 |
1 |
|
|a Elyukhin, Vyacheslav A.,
|e author.
|
245 |
1 |
0 |
|a Statistical thermodynamics of semiconductor alloys /
|c Vyacheslav A. Elyukhin.
|
260 |
|
|
|a Amsterdam, Netherlands :
|b Elsevier,
|c [2015]
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Statistical Thermodynamics of Semiconductor Alloys is the consideration of thermodynamic properties and characteristics of crystalline semiconductor alloys by the methods of statistical thermodynamics. The topics presented in this book make it possible to solve such problems as calculation of a miscibility gap, a spinodal decomposition range, a short-range order, deformations of crystal structure, and description of the order-disorder transitions. Semiconductor alloys, including doped elemental semiconductors are the basic materials of solid-state electronics. Their structural stability and other characteristics are key to determining the reliability and lifetime of devices, making the investigation of stability conditions an important part of semiconductor physics, materials science, and engineering. This book is a guide to predicting and studying the thermodynamic properties and characteristics of the basic materials of solid-state electronics.
|
505 |
0 |
|
|6 880-01
|a Semiconductor materials -- Elements of thermodynamics and statistical physics -- Regular solutions -- Cluster variation method -- Submolecular regular solutions -- Valence force field model and its applications.
|
650 |
|
0 |
|a Semiconductors
|x Mathematical models.
|
650 |
|
0 |
|a Alloys
|x Thermal properties
|x Mathematical models.
|
650 |
|
0 |
|a Statistical mechanics.
|
650 |
|
0 |
|a Statistical thermodynamics.
|
650 |
|
6 |
|a Semi-conducteurs
|0 (CaQQLa)201-0318258
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
6 |
|a Alliages
|0 (CaQQLa)201-0002249
|x Propri�et�es thermiques
|0 (CaQQLa)201-0002249
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
6 |
|a M�ecanique statistique.
|0 (CaQQLa)201-0010844
|
650 |
|
6 |
|a Thermodynamique statistique.
|0 (CaQQLa)201-0032076
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Semiconductors
|x Mathematical models.
|2 fast
|0 (OCoLC)fst01112238
|
650 |
|
7 |
|a Statistical mechanics.
|2 fast
|0 (OCoLC)fst01132070
|
650 |
|
7 |
|a Statistical thermodynamics.
|2 fast
|0 (OCoLC)fst01132092
|
776 |
0 |
8 |
|i Print version:
|a Elyukhin, Vyacheslav A.
|t Statistical thermodynamics of semiconductor alloys.
|d Amsterdam, Netherlands : Elsevier, [2015]
|w (DLC) 2015950240
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128039878
|z Texto completo
|
880 |
8 |
|
|6 505-01/(S
|a 3 -- Regular Solutions -- 3.1 REGULAR SOLUTION MODEL -- 3.2 MOLECULAR REGULAR SOLUTIONS OF BINARY COMPOUNDS -- 3.2.1 Ternary Alloys -- 3.2.2 Quaternary Alloys -- References -- 4 -- Cluster Variation Method -- 4.1 BAKER'S APPROACH -- 4.2 ONE-POINT APPROXIMATION FOR BINARY REGULAR SOLUTIONS -- 4.2.1 Helmholtz Free Energy and Chemical Potentials -- 4.2.2 Miscibility Gap -- 4.2.3 Spinodal Decomposition Range -- 4.3 ONE-POINT APPROXIMATION FOR TERNARY REGULAR SOLUTIONS -- 4.3.1 Helmholtz Free Energy and Chemical Potentials -- 4.3.2 Miscibility Gap -- 4.3.3 Spinodal Decomposition Range -- 4.4 TWO-POINT APPROXIMATION FOR BINARY REGULAR SOLUTIONS -- 4.4.1 Helmholtz Free Energy and Short-Range Order -- 4.4.2 Miscibility Gap -- 4.5 TWO-POINT APPROXIMATION FOR TERNARY REGULAR SOLUTIONS -- 4.5.1 Helmholtz Free Energy and Short-Range Order -- 4.5.2 Miscibility Gap -- 4.6 THREE-POINT APPROXIMATION FOR BINARY REGULAR SOLUTION WITH TRIANGULAR LATTICE -- 4.6.1 Helmholtz Free Energy and Short-Range Order -- 4.6.2 Miscibility Gap -- 4.7 FOUR-POINT APPROXIMATION FOR BINARY REGULAR SOLUTION WITH SIMPLE SQUARE LATTICE -- 4.7.1 Helmholtz Free Energy and Short-Range Order -- 4.7.2 Miscibility Gap -- 4.8 FOUR-POINT APPROXIMATION FOR BINARY REGULAR SOLUTIONS WITH FACE-CENTERED CUBIC AND HEXAGONAL CLOSE-PACKED LATTICES -- 4.8.1 Helmholtz Free Energy and Short-Range Order -- 4.8.2 Miscibility Gap -- 4.9 SIX-POINT APPROXIMATION FOR BINARY REGULAR SOLUTION WITH DIAMOND LATTICE -- 4.9.1 Helmholtz Free Energy and Short-Range Order -- 4.9.2 Miscibility Gap -- References -- 5 -- Submolecular Regular Solutions -- 5.1 QUATERNARY REGULAR SOLUTIONS OF FOUR BINARY COMPOUNDS -- 5.2 MODIFIED BAKER'S APPROACH -- 5.3 ONE-POINT APPROXIMATION -- 5.3.1 Helmholtz Free Energy -- 5.3.2 Miscibility Gap -- 5.3.3 Quantity μAC0<U+0012>μAD0<U+0012>μBC0+μBD0 -- 5.3.4 Spinodal Decomposition Range.
|