Cargando…

Safe robot navigation among moving and steady obstacles /

Safe Robot Navigation Among Moving and Steady Obstacles is the first book to focus on reactive navigation algorithms in unknown dynamic environments with moving and steady obstacles. The first three chapters provide introduction and background on sliding mode control theory, sensor models, and vehic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Matveev, Alexey S. (Autor), Savkin, Andrey V. (Autor), Hoy, Michael (Autor), Wang, Chao (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, UK : Butterworth Heinemann, [2016]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn922528507
003 OCoLC
005 20231120112025.0
006 m o d
007 cr cnu|||unuuu
008 150929s2016 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d YDXCP  |d CDX  |d COO  |d OPELS  |d EBLCP  |d DEBSZ  |d OCLCQ  |d U3W  |d D6H  |d OCLCF  |d AU@  |d LOA  |d CUY  |d ZCU  |d MERUC  |d ICG  |d COCUF  |d VT2  |d DKC  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 929521806  |a 932328893 
020 |a 9780128037577  |q (electronic bk.) 
020 |a 0128037571  |q (electronic bk.) 
020 |a 9780128037300  |q (electronic bk.) 
020 |a 012803730X  |q (electronic bk.) 
020 |z 012803730X 
035 |a (OCoLC)922528507  |z (OCoLC)929521806  |z (OCoLC)932328893 
050 4 |a TJ211.415 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 037000  |2 bisacsh 
082 0 4 |a 629.8/932  |2 23 
100 1 |a Matveev, Alexey S.,  |e author. 
245 1 0 |a Safe robot navigation among moving and steady obstacles /  |c Alexey S. Matveev, Andrey V. Savkin, Michael Hoy, Chao Wang. 
264 1 |a Oxford, UK :  |b Butterworth Heinemann,  |c [2016] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
520 |a Safe Robot Navigation Among Moving and Steady Obstacles is the first book to focus on reactive navigation algorithms in unknown dynamic environments with moving and steady obstacles. The first three chapters provide introduction and background on sliding mode control theory, sensor models, and vehicle kinematics. Chapter 4 deals with the problem of optimal navigation in the presence of obstacles. Chapter 5 discusses the problem of reactively navigating. In Chapter 6, border patrolling algorithms are applied to a more general problem of reactively navigating. A method for guidance of a Dubins-like mobile robot is presented in Chapter 7. Chapter 8 introduces and studies a simple biologically-inspired strategy for navigation a Dubins-car. Chapter 9 deals with a hard scenario where the environment of operation is cluttered with obstacles that may undergo arbitrary motions, including rotations and deformations. Chapter 10 presents a novel reactive algorithm for collision free navigation of a nonholonomic robot in unknown complex dynamic environments with moving obstacles. Chapter 11 introduces and examines a novel purely reactive algorithm to navigate a planar mobile robot in densely cluttered environments with unpredictably moving and deforming obstacles. Chapter 12 considers a multiple robot scenario. For the Control and Automation Engineer, this book offers accessible and precise development of important mathematical models and results. All the presented results have mathematically rigorous proofs. On the other hand, the Engineer in Industry can benefit by the experiments with real robots such as Pioneer robots, autonomous wheelchairs and autonomous mobile hospital. 
505 0 |a Front Cover; Safe Robot Navigation Among Moving and Steady Obstacles; Copyright; Contents; Preface; Abbreviations; Frequently used notations; Chapter 1: Introduction; 1.1 Collision-free navigation of wheeled robots among moving and steady obstacles; 1.2 Overview and organization of the book; 1.3 Sliding mode control; 1.4 Experimental equipment; 1.4.1 Laboratorial wheeled robot Pioneer P3-DX; 1.4.2 Intelligent autonomous wheelchair system; 1.4.3 Autonomous hospital bed system; Chapter 2: Fundamentals of sliding mode control; 2.1 Introduction; 2.2 Sliding motion; 2.3 Filippov solutions 
505 8 |a Chapter 3: Survey of algorithms for safe navigation of mobile robots in complex environments3.1 Introduction; 3.1.1 Exclusions; 3.2 Problem considerations; 3.2.1 Environment; 3.2.2 Kinematics of mobile robots; 3.2.3 Sensor data; 3.2.4 Optimality criteria; 3.2.5 Biological inspiration; 3.2.6 Implementation examples; 3.2.7 Summary of the methods reviewed; 3.3 Model predictive control; 3.3.1 Robust MPC; 3.3.2 Nonlinear MPC; 3.3.3 Planning algorithms; 3.4 Sensor-based techniques; 3.4.1 Obstacle avoidance via boundary following; 3.4.1.1 Distance based; 3.4.1.2 Sliding mode control 
505 8 |a 3.4.1.3 Bug algorithms3.4.1.4 Full information based; 3.4.2 Sensor-based path planning; 3.4.3 Other reactive methods; 3.4.3.1 Artificial potential field methods; 3.4.3.2 Uncategorized approaches; 3.5 Moving obstacles; 3.5.1 Human-like obstacles; 3.5.2 Known obstacles; 3.5.3 Kinematically constrained obstacles; 3.5.3.1 Path-based methods; 3.5.3.2 Reactive methods; 3.6 Multiple robot navigation; 3.6.1 Communication types; 3.6.2 Reactive methods; 3.6.2.1 Potential field methods; 3.6.2.2 Reciprocal collision avoidance methods; 3.6.2.3 Hybrid logic approaches; 3.6.3 Decentralized MPC 
505 8 |a Chapter 4: Shortest path algorithm for navigation of wheeled mobile robots among steady obstacles4.1 Introduction; 4.2 System description and main assumptions; 4.3 Off-line shortest path planning; 4.4 On-line navigation; 4.5 Computer simulations; 4.6 Experiments with a real robot; Chapter 5: Reactive navigation of wheeled robots for border patrolling; 5.1 Introduction; 5.2 Boundary following using a minimum distance sensor: System description and problem statement; 5.3 Main assumptions of theoretical analysis; 5.4 Navigation for border patrolling based on minimum distance measurements 
505 8 |a 5.4.1 Proof of Theorem 4.15.5 Computer simulations of border patrolling with a minimum distance sensor; 5.6 Boundary following with a rigidly mounted distance sensor: Problem setup; 5.7 Assumptions of theoretical analysis and tuningof the navigation controller; 5.7.1 Tuning of the navigation controller; 5.8 Boundary following with a rigidly mounted sensor: Convergence of the proposednavigation law; 5.8.1 Illustrative analysis of the convergence domain; 5.8.2 Proofs of Theorem 8.1 and Lemmas 8.1 and 8.2; 5.9 Computer simulations of border patrolling with a rigidly mounted distance sensor 
650 0 |a Mobile robots  |x Navigation. 
650 0 |a Autonomous robots. 
650 6 |a Robots mobiles  |0 (CaQQLa)201-0220901  |x Navigation.  |0 (CaQQLa)201-0379983 
650 6 |a Robots autonomes.  |0 (CaQQLa)201-0305344 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Robotics.  |2 bisacsh 
650 7 |a Autonomous robots  |2 fast  |0 (OCoLC)fst00824159 
700 1 |a Savkin, Andrey V.,  |e author. 
700 1 |a Hoy, Michael,  |e author. 
700 1 |a Wang, Chao,  |e author. 
776 0 8 |i Print version:  |a Savkin, Andrey V.  |t Safe Robot Navigation Among Moving and Steady Obstacles.  |d : Elsevier Science, �2015 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128037300  |z Texto completo