Cargando…

Mathematical modeling in diffraction theory : based on A priori information on the analytical properties of the solution /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kyurkchan, Alexander G. (Autor), Smirnova, Nadezhda I. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn922324030
003 OCoLC
005 20231120112024.0
006 m o d
007 cr cnu|||unuuu
008 150928s2016 ne ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d N$T  |d OCLCO  |d IDEBK  |d CDX  |d OPELS  |d OCLCF  |d OCLCO  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d U3W  |d D6H  |d EZ9  |d AU@  |d OCLCQ  |d ABH  |d DCT  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ 
019 |a 922629797  |a 929521690 
020 |a 9780128037485  |q (electronic bk.) 
020 |a 0128037482  |q (electronic bk.) 
020 |z 9780128037287 
020 |z 0128037288 
035 |a (OCoLC)922324030  |z (OCoLC)922629797  |z (OCoLC)929521690 
050 4 |a QA401 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511/.8  |2 23 
100 1 |a Kyurkchan, Alexander G.,  |e author. 
245 1 0 |a Mathematical modeling in diffraction theory :  |b based on A priori information on the analytical properties of the solution /  |c Alexander G. Kyurkchan and Nadezhda I. Smirnova. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2016. 
264 4 |c �2016 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed September 30, 2015). 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Mathematical Modeling in Diffraction Theory: Based on A Priori Information on the Analytic Properties of the Solution; Copyright; Contents; Introduction; Chapter 1: Analytic Properties of Wave Fields; 1.1. Derivation of Basic Analytic Representations of Wave Fields; 1.1.1. Representation of Fields by Wave Potential; 1.1.2. Representation by a Series in Wave Harmonics and the Atkinson-Wilcox Expansion; 1.1.3. Integral and Series of Plane Waves; 1.2. Analytic Properties of the Wave Field Pattern and the Domains of Existence of Analytic Representations. 
505 8 |a 1.2.1. Analytic Properties of the Wave Field Pattern1.2.2. Localization of Singularities of the Wave Field Analytic Continuation; 1.2.3. Examples of Determining the Singularities of the Wave Field Analytic Continuation; 1.2.3.1. Singularities of Mapping (1.55); 1.2.3.2. Singularities at Source Images; 1.2.4. Boundaries of the Domains of Existence of Analytic Representations; 1.2.5. Relationship Between the Asymptotics of the Pattern on the Complex Plane of its Argument and the Field Behavior ne ... ; Chapter 2: Methods of Auxiliary Currents and Method of Discrete Sources. 
505 8 |a 2.1. Existence and Uniqueness Theorems2.2. Solution of the MAC Integral Equation and the MDS; 2.3. Rigorous Solution of the Diffraction Problem by MAC [9, 16]; 2.4. Modified MDS; Chapter 3: Null Field and T-Matrix Methods; 3.1. NFM for Scalar Diffraction Problems; 3.1.1. Statement of the Problem and Derivation of the NFM Integral Equation; 3.1.2. Numerical Solution of the NFM Integral Equation; 3.2. NFM for Vector Diffraction Problems; 3.2.1. Statement of the Problem and Derivation of the NFM Integral Equation; 3.3. Results of Numerical Studies. 
505 8 |a 3.3.1. Illustration of the Necessity to Consider the Singularities of the Wave Field Analytic Continuation in NFM3.3.2. Null Field Method and the Method of Auxiliary Currents; 3.4. T-Matrix Method; 3.4.1. Derivation of Basic Relations; 3.4.2. Numerical Studies; 3.4.3. Modified T-Matrix Method; Chapter 4: Method of Continued Boundary Conditions; 4.1. Method of Continued Boundary Conditions for Scalar Diffraction Problems; 4.1.1. Statement of the Problem and the Method Idea; 4.1.2. Derivation of CBCM Integral Equations; 4.1.3. Existence and Uniqueness of the CBCM Integral Equation Solution. 
505 8 |a 4.1.4. Well-Posedness of the Numerical Solution of the CBCM Integral Equation4.1.5. CBCM Rigorous Solution of Some Diffraction Problems and Estimation of the Error of the Method; 4.1.6. Algorithms for Numerical Solution of the CBCM Integral Equations; 4.1.6.1. Algorithm for Arbitrary Bodies; 4.1.6.2. Algorithm for Regular Prisms; 4.2. Method of Continued Boundary Conditions for Vector Problems of Diffraction; 4.2.1. Statement of the Problem and Derivation of the CBCM Integral Equation; 4.2.2. Algorithm for Solving the CBCM Integral Equations Numerically. 
650 0 |a Mathematical models. 
650 0 |a Diffraction. 
650 0 |a A priori. 
650 0 |a Signal processing  |x Mathematics. 
650 2 |a Models, Theoretical  |0 (DNLM)D008962 
650 6 |a Mod�eles math�ematiques.  |0 (CaQQLa)201-0015060 
650 6 |a Diffraction.  |0 (CaQQLa)201-0010180 
650 6 |a A priori.  |0 (CaQQLa)201-0007137 
650 6 |a Traitement du signal  |x Math�ematiques.  |0 (CaQQLa)000299542 
650 7 |a mathematical models.  |2 aat  |0 (CStmoGRI)aat300065075 
650 7 |a diffraction.  |2 aat  |0 (CStmoGRI)aat300220378 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a A priori.  |2 fast  |0 (OCoLC)fst00793749 
650 7 |a Diffraction.  |2 fast  |0 (OCoLC)fst00893514 
650 7 |a Mathematical models.  |2 fast  |0 (OCoLC)fst01012085 
650 7 |a Signal processing  |x Mathematics.  |2 fast  |0 (OCoLC)fst01118302 
700 1 |a Smirnova, Nadezhda I.,  |e author. 
776 0 8 |i Print version:  |a Kyurkchan, Alexander G.  |t Mathematical modeling in diffraction theory.  |d Amsterdam : Elsevier, 2016  |z 9780128037287  |z 0128037288  |w (OCoLC)911073387 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128037287  |z Texto completo