Building a scalable data warehouse with data vault 2.0 /
Annotation
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Morgan Kaufmann is an imprint of Elsevier,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; Contents; Authors Biography; Daniel Linstedt; Michael Olschimke; Foreword; Preface; Acknowledgments; Daniel Linstedt; Michael Olschimke; Chapter 1
- Introduction to Data Warehousing; 1.1
- History of Data Warehousing; 1.1.1
- Decision Support Systems; 1.1.2
- Data Warehouse Systems; 1.2
- The Enterprise Data Warehouse Environment; 1.2.1
- Access; 1.2.2
- Multiple Subject Areas; 1.2.3
- Single Version of Truth; 1.2.4
- Single Version of Facts; 1.2.5
- Mission Criticality; 1.2.6
- Scalability; 1.2.7
- Big Data; 1.2.8
- Performance Issues; 1.2.9
- Complexity.
- 1.2.10
- Auditing and Compliance1.2.11
- Costs; 1.2.12
- Other Business Requirements; 1.3
- Introduction to Data Vault 2.0; 1.4
- Data Warehouse Architecture; 1.4.1
- Typical Two-Layer Architecture; 1.4.2
- Typical Three-Layer Architecture; References; Chapter 2
- Scalable Data Warehouse Architecture; 2.1
- Dimensions of Scalable Data Warehouse Architectures; 2.1.1
- Workload; 2.1.2
- Data Complexity; 2.1.3
- Analytical Complexity; 2.1.4
- Query Complexity; 2.1.5
- Availability; 2.1.6
- Security; 2.2
- Data Vault 2.0 Architecture; 2.2.1
- Business Rules Definition.
- 2.2.2
- Business Rules Application2.2.3
- Staging Area Layer; 2.2.4
- Data Warehouse Layer; 2.2.5
- Information Mart Layer; 2.2.6
- Metrics Vault; 2.2.7
- Business Vault; 2.2.8
- Operational Vault; 2.2.9
- Managed Self-Service BI; 2.2.10
- Other Features; References; Chapter 3
- The Data Vault 2.0 Methodology; 3.1
- Project Planning; 3.1.1
- Capability Maturity Model Integration; 3.1.1.1
- Capability Levels; 3.1.1.2
- Maturity Levels; 3.1.1.3
- Advancing to Maturity Level 5; 3.1.1.4
- Integrating CMMI in the Data Vault 2.0 Methodology; 3.1.2
- Managing the Project; 3.1.2.1
- Scrum.
- 3.1.2.2
- Iterative Approach3.1.2.3
- Product and Sprint Backlog; 3.1.2.4
- Integrating Scrum with the Data Vault 2.0 Methodology; 3.1.3
- Defining the Project; 3.1.3.1
- Agile Requirements Gathering; 3.1.4
- Estimation of the Project; 3.1.4.1
- Function Point Analysis; 3.1.4.2
- Measuring with Function Points; 3.1.4.3
- Function Point Analysis for Data Warehousing; 3.1.4.4
- Boundaries in Data Warehousing; 3.1.4.5
- Estimating Size; 3.1.4.6
- Assessing ETL Complexity Factors; 3.1.4.7
- Applying Function Point Analysis to Data Warehousing.
- 3.1.4.8
- Function Points for Enterprise Data Warehouse3.2
- Project Execution; 3.2.1
- Traditional Software Development Life-Cycle; 3.2.1.1
- Requirements Engineering; 3.2.1.2
- Design; 3.2.1.3
- Implementation and Unit Testing; 3.2.1.4
- Integration and System Testing; 3.2.1.5
- Operation and Maintenance; 3.2.2
- Applying Software Development Life-Cycle to the Data Vault 2.0 Methodology; 3.2.3
- Parallel Teams; 3.2.4
- Technical Numbering; 3.3
- Review and Improvement; 3.3.1
- Six Sigma; 3.3.1.1
- Applying Six Sigma to Software; 3.3.1.2
- Six Sigma Framework; 3.3.1.3
- DMAIC Improvement.
- 3.3.1.4
- Applying Six Sigma to Data Warehousing.