Cargando…

Emerging trends in computational biology, bioinformatics, and systems biology : algorithms and software tools /

This book discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simulation techniques. It addresses the development and application of data-analytical and theoret...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Tran, Quoc-Nam (Editor ), Arabnia, Hamid (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Elsevier : Morgan Kaufman, [2015]
Colección:Emerging trends in computer science & applied computing.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_ocn918135780
003 OCoLC
005 20231120112014.0
006 m o d
007 cr cnu|||unuuu
008 150813s2015 mau ob 001 0 eng d
010 |a  2015937984 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d N$T  |d YDXCP  |d OPELS  |d IDEBK  |d UMI  |d OCLCF  |d STF  |d DEBBG  |d B24X7  |d COO  |d OCLCO  |d CDX  |d D6H  |d AU@  |d SCB  |d Z5A  |d VT2  |d VGM  |d LIV  |d OCLCQ  |d U3W  |d CEF  |d OCLCQ  |d WYU  |d LQU  |d OCLCQ  |d UKMGB  |d OCLCO  |d OCLCQ 
015 |a GBB581384  |2 bnb 
016 7 |a 017409741  |2 Uk 
019 |a 919515530  |a 924055503  |a 956678784  |a 988654386  |a 1008960047  |a 1066407451  |a 1103260161  |a 1105189868  |a 1105564688  |a 1129347079  |a 1152981639  |a 1192336832  |a 1235828142  |a 1240535289  |a 1262690376 
020 |a 9780128026465  |q (electronic bk.) 
020 |a 0128026464  |q (electronic bk.) 
020 |a 0128025085 
020 |a 9780128025086 
020 |z 9780128025086 
035 |a (OCoLC)918135780  |z (OCoLC)919515530  |z (OCoLC)924055503  |z (OCoLC)956678784  |z (OCoLC)988654386  |z (OCoLC)1008960047  |z (OCoLC)1066407451  |z (OCoLC)1103260161  |z (OCoLC)1105189868  |z (OCoLC)1105564688  |z (OCoLC)1129347079  |z (OCoLC)1152981639  |z (OCoLC)1192336832  |z (OCoLC)1235828142  |z (OCoLC)1240535289  |z (OCoLC)1262690376 
050 4 |a QH324.2  |b .T73 2015eb 
072 7 |a SCI  |x 007000  |2 bisacsh 
082 0 4 |a 572.80285  |2 23 
245 0 0 |a Emerging trends in computational biology, bioinformatics, and systems biology :  |b algorithms and software tools /  |c edited by Quoc Nam Tran, Hamid Arabnia. 
264 1 |a Waltham, MA :  |b Elsevier :  |b Morgan Kaufman,  |c [2015] 
264 4 |c �2015 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Emerging trends in computer science & applied computing 
588 0 |a Vendor-supplied metadata. 
504 |a Includes bibliographical references and index. 
520 |a This book discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simulation techniques. It addresses the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological and behavioral systems; presents a systematic approach for storing, retrieving, organizing and analyzing biological data using software tools with applications; provides a systems biology perspective including general guidelines and techniques for obtaining, integrating and analyzing complex data sets from multiple experimental sources using computational tools and software. --  |c Edited summary from book. 
505 0 |a Front Cover; Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology: Algorithms and Software Tools; Copyright; Contents; Contributors; Preface; Acknowledgments; Introduction; Chapter 1: Supervised Learning with the Artificial Neural Networks Algorithm for Modeling Immune Cell Differentiation; 1. Introduction; 1.A. Immune cell differentiation and modeling; 1.B. MSM and model reduction; 1.C. ANN algorithm and its applications; 2. Related work; 3. Modeling immune cell differentiation; 3.1. T cell differentiation process as a use case. 
505 8 |a 3.2. Data for training and testing models3.3. ANN model; 3.4. Comparative analysis with the LR model and SVM; 3.5. Capability of ANN model to analyze data with noise; 4. Discussion; 5. Conclusion; References; References; Chapter 2: Accelerating Techniques for Particle Filter Implementations on FPGA; 1. Introduction; 2. PF and SLAM algorithms; 2.1. Particle filtering; 2.2. Application of PF to SLAM; 3. Computational bottleneck identification and hardware/software partitioning; 4. PF acceleration techniques; 4.1. CORDIC acceleration technique; 4.2. Ziggurat acceleration technique. 
505 8 |a 5. Hardware implementation6. Hardware/software Architecture; 7. Results and discussion; 8. Conclusions; References; Chapter 3: Biological Study on Pulsatile Flow of Herschel-Bulkley Fluid in Tapered Blood Vessels; 1. Introduction; 2. Formulation of the problem; 3. Solution; 4. Discussion; 5. Conclusion; References; Chapter 4: Hierarchical k-Means: A Hybrid Clustering Algorithm and Its Application to Study Gene Expression in Lung Adeno ... ; 1. Introduction; 2. Methods; 3. Data Set; 4. Results and Discussion; 5. Conclusions; References; Supplementary Materials. 
505 8 |a Chapter 5: Molecular Classification of N-Aryloxazolidinone-5-carboxamides as Human Immunodeficiency Virus Protease Inhibitors1. Introduction; 2. Computational method; 3. Classification algorithm; 4. Information entropy; 5. The EC of entropy production; 6. Learning procedure; 7. Calculation results and discussion; 8. Conclusions; Acknowledgment; References; Chapter 6: Review of Recent Protein-Protein Interaction Techniques; 1. Introduction; 2. Technical challenges and open issues; 3. Performance measures; 4. Computational approaches; 4.1. Sequence-based approaches. 
505 8 |a 4.1.1. Statistical sequence-based approaches4.1.1.1. Mirror tree method; 4.1.1.2. PIPE; 4.1.1.3. CD; 4.1.2. ML sequence-based approaches; 4.1.2.1. Auto covariance; 4.1.2.2. Pairwise similarity; 4.1.2.3. AA composition; 4.1.2.4. AA Triad; 4.1.2.5. UNISPPI; 4.1.2.6. ETB-Viterbi; 4.2. Structure-based approaches; 4.2.1. Template structure-based approaches; 4.2.1.1. PRISM; 4.2.1.2. PrePPI; 4.2.2. Statistical structure-based approaches; 4.2.2.1. PID matrix score; 4.2.2.2. PreSPI; 4.2.2.3. DCC; 4.2.2.4. MEGADOCK; 4.2.2.5. Meta approach; 4.2.3. ML structure-based approaches; 4.2.3.1. Random Forest. 
650 0 |a Computational biology. 
650 0 |a Bioinformatics. 
650 0 |a Systems biology. 
650 2 |a Computational Biology  |0 (DNLM)D019295 
650 2 |a Systems Biology  |0 (DNLM)D049490 
650 6 |a Bio-informatique.  |0 (CaQQLa)201-0313075 
650 6 |a Biologie syst�emique.  |0 (CaQQLa)000260964 
650 7 |a SCIENCE  |x Life Sciences  |x Biochemistry.  |2 bisacsh 
650 7 |a Bioinformatics.  |2 fast  |0 (OCoLC)fst00832181 
650 7 |a Computational biology.  |2 fast  |0 (OCoLC)fst00871990 
650 7 |a Systems biology.  |2 fast  |0 (OCoLC)fst01745552 
650 7 |a Biology - General.  |2 hilcc 
650 7 |a Biology.  |2 hilcc 
650 7 |a Health & Biological Sciences.  |2 hilcc 
700 1 |a Tran, Quoc-Nam,  |e editor. 
700 1 |a Arabnia, Hamid,  |e editor. 
776 0 8 |i Print version:  |a Tran, Quoc-Nam.  |t Emerging trends in computational biology, bioinformatics, and systems biology.  |d Amsterdam : Morgan Kaufmann, 2015  |z 9780128025086  |w (OCoLC)915354962 
830 0 |a Emerging trends in computer science & applied computing. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128025086  |z Texto completo