Biomimetic technologies : principles and applications /
Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical backgr...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK :
Woodhead Publishing is an imprint of Elsevier,
[2015]
|
Colección: | Woodhead Publishing series in electronic and optical materials ;
no. 82. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Biomimetic Technologies: Principles and applications; Copyright; Contents; Contributors; Woodhead Publishing Series in Electronic and Optical Materials; Preface; Part One: Principles and Materials for Biomimetic Technologies; Chapter 1: Synthesis of molecular biomimetics; 1.1. Introduction; 1.1.1. Bio-inspiration; 1.1.2. Bio-nanomaterials; 1.2. Building blocks; 1.2.1. Amino acids; 1.2.2. Lipids; 1.2.3. Carbohydrates; 1.2.4. Nucleic acids; 1.2.5. Carbon allotropes; 1.2.6. Dendrimers; 1.2.7. Organosilanes; 1.3. Bottom-up arrangement; 1.3.1. Self-assembled; 1.3.2. Soft lithography.
- 1.3.3. Bulk approaches1.4. Supramolecular organization; 1.4.1. Surfactants, micelles, and vesicles; 1.4.2. Colloids and nanoparticles; 1.4.3. Surfaces and membranes; 1.4.4. Polymers; 1.5. Conclusions and perspectives; References; Chapter 2: Bio-inspired fiber composites; 2.1. Introduction; 2.2. Biological materials; 2.3. Sources of bio-inspiration; 2.3.1. Nacre; 2.3.2. Gecko; 2.3.3. Mussel; 2.3.4. Bone; 2.3.5. Biological fibers; 2.4. Multifunctional bio-inspired composites; 2.4.1. Auxetic bio-inspired honeycomb cores and matrices for composites.
- 2.4.2. Composites inspired to insect cuticles for stiffness improvement and water retention2.4.3. Function of hollows in composite fibers: self-healing and other properties; 2.4.4. Toward self-assembly of composites; 2.5. Difficulties in applying bio-inspiration to composites: the case of superhydrophobicity; 2.6. Conclusions and future perspectives; References; Chapter 3: Solving the bio-machine interface-a synthetic biology approach; 3.1. Introduction; 3.2. Definition of the bio-machine interface; 3.3. Historical perspective; 3.4. Cells as biosensors.
- 3.5. Difficulties in addressing the bio-electronic interface3.6. Synthetic biology applied to the bio-electronic interface; 3.7. Genetic programs that perform signal processing; 3.8. Optogenetics for interfacing cells/tissue with machines; 3.9. Conclusions; References; Part Two: Bio-Inspired Sensors; Chapter 4: Biomimetic tactile sensing; 4.1. Introduction; 4.2. Human sense of touch; 4.3. Biomimetic artificial touch; 4.3.1. Soft artificial skin; 4.3.2. Mechanotransduction core technology; 4.3.3. Neuromorphic representation of tactile information for biomimetic tactile computation.
- 4.4. Case study of tactile sensing technology: the POSFET device4.4.1. Structure and working of a POSFET device; 4.4.2. POSFET tactile arrays-Design, fabrication, and evaluation; 4.5. Other examples of bio-inspired tactile sensing; 4.6. Conclusion; Acknowledgments; References; Chapter 5: Bio-inspired hair-based inertial sensors; 5.1. Introduction; 5.2. Hair structures for inertial sensing; 5.2.1. Cricket's clavate hairs; 5.2.2. Fly's haltere; 5.3. Cricket-inspired accelerometer; 5.3.1. Physics; 5.3.2. Design; 5.3.3. Fabrication; 5.3.4. Experimental; 5.3.4.1. Setup; 5.3.4.2. Frequency response.