Cargando…

Water gas shift reaction : research developments and applications /

Water Gas Shift Reaction: Research Developments and Applications outlines the importance of hydrogen as a future fuel, along with the various hydrogen production methods. The book explains the development of catalysts for Water Gas Shift (WGS) reaction at different temperatures and steam/CO ratios,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gunugunuri, K. Reddy (Autor), Smirniotis, Panagiotis (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2015]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Water Gas Shift Reaction: Research Developments and Applications; Copyright; Dedication; Contents; Chapter 1: Introduction About WGS Reaction; 1.1. History and Background; 1.1.1. Water Gas; 1.1.1.1. Types of Water Gas; 1.1.1.1.1. Carburetted Water Gas; 1.1.1.1.2. Semi-Water Gas; 1.1.2. Water-Gas Shift Reaction; 1.2. Thermodynamic Considerations; 1.3. Ways to Conduct WGSR; 1.3.1. WGS Reaction in Traditional Reactor; 1.3.1.1. Homogeneous Catalytic WGS Reaction; 1.3.1.1.1. Heterogeneous Catalytic WGS Reaction; 1.3.2. WGSR in Membrane Reactors; 1.3.2.1. Membrane Reactor.
  • 1.3.3. Photo-Catalytic WGS Reaction1.4. Types of Heterogeneous Water-Gas Shift Catalysts; 1.4.1. HT WGS Catalysts; 1.4.2. LT-WGS Catalysts; 1.4.2.1. Cu-Based Catalysts; 1.4.2.2. Nobel Metal-Based Catalysts; 1.4.3. Sulphur Tolerant Co-Mo Catalysts; References; References; References; References; References; References; References; References; References; Chapter 2: High-Temperature WGS Reaction; 2.1. Fe-Cr Catalysts; 2.1.1. Fe-Cr Activation; 2.1.2. Influence of Various Parameters; 2.1.3. Effect of Other Metals on the Activity of Iron-Chromia Catalysts; 2.2. Cr-Free Fe-Based Catalysts.
  • 2.3. Fe-Al Catalysts2.4. Ceria-Based Catalysts; 2.5. Perovskites Type of Catalysts; 2.6. Integrated Gasification Combined Cycle; Chapter 3: Low-Temperature WGS Reaction; 3.1. Low-Temperature WGS Reaction; 3.2. Non-Noble Metal Catalysts; 3.2.1. Cu-Based Catalysts; 3.2.1.1. Cu-Zn-Al Catalysts; 3.2.1.2. Other Cu Catalysts; 3.2.1.3. Cu/CeO2; 3.2.1.4. Bimetallic Cu/CeO2 Catalysts; 3.2.2. Ni Catalysts; 3.3. Nobel Metal-Based Catalysts; 3.3.1. Pt-Based Catalysts; 3.3.1.1. Pt/ZrO2; 3.3.1.2. Pt/CeO2; 3.3.1.3. Pt/TiO2; 3.3.1.4. Pt/Other Supports; 3.3.1.5. Bimetallic Pt Catalysts.
  • 3.3.1.6. Deactivation of Pt Catalysts3.3.2. Ru-Based Catalysts; 3.3.3. Rh-Based Catalysts; 3.3.4. Pd Catalysts; 3.3.5. Au-Based Catalysts; 3.3.5.1. Au/Fe2O3; 3.3.5.2. Au/TiO2; 3.3.5.3. Au/ZrO2; 3.3.5.4. Au/CeO2; 3.3.5.5. Bimetallic Gold Catalysts; Chapter 4: WGS Reaction over Co-Mo Sulphided Catalysts; 4.1. Introduction; 4.2. Mo Catalysts; 4.3. Co-Mo Catalysts; 4.4. Effect of Support and Other Metal Addition; 4.5. Role of K as Promoter; 4.6. Co-Mo Catalysts in Industrial Conditions; 4.7. Supported Zeolite Catalysts for the WGS Reaction; 4.8. Molybdenum Carbide Catalysts.
  • Chapter 5: Ultra High Temperature WGS Reaction5.1. Introduction; 5.2. Influence of Promoters; 5.3. Role of Cu; 5.4. Role of Co-Promoter; 5.5. Long-Term Time on Stream Stability Test; Chapter 6: WGS Reaction in Membrane Reactors; 6.1. Introduction; 6.2. Pd-Based Membrane Reactors; 6.3. Silica Membranes; 6.4. Proton-Conducting Membranes; 6.5. CO2-Selective Membrane Reactors; 6.6. Zeolite Membrane Reactors; 6.7. Theoretical Investigation of Membrane Reactors; Chapter 7: Homogeneous WGS Reaction; 7.1. Homogeneous Catalytic WGS Reaction; 7.2. Rh-Based Complexes for Homogeneous WGS Reaction.