Cargando…

Data mining for bioinformatics applications /

Data Mining for Bioinformatics Applications provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems, including problem definition, data collection, data preprocessing, modeling, and validation. The text uses an example-based method to i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zengyou, He (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK : Woodhead Publishing is an imprint of Elsevier, [2015]
Colección:Woodhead Publishing series in biomedicine ; no. 76.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn910964267
003 OCoLC
005 20231120112003.0
006 m o d
007 cr cnu|||unuuu
008 150612s2015 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d N$T  |d OPELS  |d IDEBK  |d DEBSZ  |d UIU  |d CDX  |d YDXCP  |d VRC  |d OCLCF  |d VGM  |d OCLCQ  |d U3W  |d D6H  |d AU@  |d E7B  |d WYU  |d CUY  |d LOA  |d ZCU  |d MERUC  |d ICG  |d K6U  |d COCUF  |d VT2  |d DKC  |d OCLCQ  |d LQU  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 911046672  |a 912324728  |a 1105173530  |a 1105569623 
020 |a 9780081001073  |q (electronic bk.) 
020 |a 008100107X  |q (electronic bk.) 
020 |a 0081001002 
020 |a 9780081001004 
020 |z 9780081001004  |q (print) 
035 |a (OCoLC)910964267  |z (OCoLC)911046672  |z (OCoLC)912324728  |z (OCoLC)1105173530  |z (OCoLC)1105569623 
050 4 |a QH324.2 
072 7 |a COM  |x 082000  |2 bisacsh 
072 7 |a SCI  |x 007000  |2 bisacsh 
082 0 4 |a 572.8  |a 572.80285  |2 23 
100 1 |a Zengyou, He,  |e author. 
245 1 0 |a Data mining for bioinformatics applications /  |c Zengyou He. 
264 1 |a Cambridge, UK :  |b Woodhead Publishing is an imprint of Elsevier,  |c [2015] 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Woodhead Publishing series in biomedicine ;  |v number 76 
588 0 |a Online resource; title from PDF title page (Ebsco, viewed June 15, 2015). 
504 |a Includes bibliographical references and index. 
520 |a Data Mining for Bioinformatics Applications provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems, including problem definition, data collection, data preprocessing, modeling, and validation. The text uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems, containing 45 bioinformatics problems that have been investigated in recent research. For each example, the entire data mining process is described, ranging from data preprocessing to modeling and result validation. 
505 0 |a Front Cover -- Data Mining for Bioinformatics Applications -- Copyright -- Contents -- List of figures -- List of tables -- About the author -- Dedication -- Introduction -- Audience -- Acknowledgments -- Chapter 1: An overview of data mining -- 1.1. What's data mining? -- 1.2. Data mining process models -- 1.3. Data collection -- 1.4. Data preprocessing -- 1.5. Data modeling -- 1.5.1. Pattern mining -- 1.5.2. Supervised predictive modeling: Classification and regression -- 1.5.3. Unsupervised descriptive modeling: Cluster analysis -- 1.6. Model assessment -- 1.7. Model deployment -- 1.8. Summary -- References -- Chapter 2: Introduction to bioinformatics -- 2.1. A primer to molecular biology -- 2.2. What is bioinformatics? -- 2.3. Data mining issues in bioinformatics -- 2.3.1. Sequences -- 2.3.1.1. The analysis and comparison of multiple sequences -- 2.3.1.2. Sequence identification from experimental data -- 2.3.1.3. Sequence classification and regression -- 2.3.2. Structures -- 2.3.2.1. Multiple structure analysis -- 2.3.2.2. Structure prediction -- 2.3.2.3. Structure-based prediction -- 2.3.3. Networks -- 2.3.3.1. Network analysis -- 2.3.3.2. Network inference -- 2.3.3.3. Network-assisted prediction -- 2.4. Challenges in biological data mining -- 2.5. Summary -- References -- Chapter 3: Phosphorylation motif discovery -- 3.1. Background and problem description -- 3.2. The nature of the problem -- 3.3. Data collection -- 3.4. Data preprocessing -- 3.5. Modeling: A discriminative pattern mining perspective -- 3.5.1. The Motif-All algorithm -- 3.5.2. The C-Motif algorithm -- 3.6. Validation: Permutation p-value calculation -- 3.7. Discussion and future perspective -- References -- Chapter 4: Phosphorylation site prediction -- 4.1. Background and problem description -- 4.2. Data collection and data preprocessing -- 4.2.1. Training data construction. 
505 8 |a 4.2.2. Feature extraction -- 4.3. Modeling: Different learning schemes -- 4.3.1. Standard supervised learning -- 4.3.2. Active learning -- 4.3.3. Transfer learning -- 4.4. Validation: Cross-validation and independent test -- 4.5. Discussion and future perspective -- References -- Chapter 5: Protein inference in shotgun proteomics -- 5.1. Introduction to proteomics -- 5.2. Protein identification in proteomics -- 5.3. Protein inference: Problem formulation -- 5.4. Data collection -- 5.5. Modeling with different data mining techniques -- 5.5.1. A classification approach -- 5.5.2. A regression approach -- 5.5.3. A clustering approach -- 5.6. Validation: Target-decoy versus decoy-free -- 5.6.1. Target-decoy method -- 5.6.2. Decoy-free method -- 5.6.3. On unbiased performance evaluation for protein inference -- 5.7. Discussion and future perspective -- References -- Chapter 6: PPI network inference from AP-MS data -- 6.1. Introduction to protein-protein interactions -- 6.2. AP-MS data generation -- 6.3. Data collection and preprocessing -- 6.4. Modeling with different data mining techniques -- 6.4.1. A correlation mining approach -- 6.4.2. A discriminative pattern mining approach -- 6.5. Validation -- 6.6. Discussion and future perspective -- References -- Chapter 7: Protein complex identification from AP-MS data -- 7.1. An introduction to protein complex identification -- 7.2. Data collection and data preprocessing -- 7.3. Modeling: A graph clustering framework -- 7.3.1. The clique percolation approach -- 7.3.2. The statistical inference method -- 7.4. Validation -- 7.5. Discussion and future perspective -- References -- Chapter 8: Biomarker discovery -- 8.1. An introduction to biomarker discovery -- 8.2. Data preprocessing -- 8.3. Modeling -- 8.3.1. Cut point selection -- 8.3.2. Binary threshold classifier -- 8.3.3. Feature evaluation criterion. 
505 8 |a 8.4. Validation -- 8.5. Case study -- 8.6. Discussion and future perspective -- References -- Conclusions -- Index. 
650 0 |a Bioinformatics. 
650 0 |a Data mining. 
650 2 |a Computational Biology  |0 (DNLM)D019295 
650 2 |a Data Mining  |0 (DNLM)D057225 
650 6 |a Bio-informatique.  |0 (CaQQLa)201-0313075 
650 6 |a Exploration de donn�ees (Informatique)  |0 (CaQQLa)201-0300292 
650 7 |a COMPUTERS  |x Bioinformatics.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Biochemistry.  |2 bisacsh 
650 7 |a Bioinformatics.  |2 fast  |0 (OCoLC)fst00832181 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
776 0 8 |i Print version:  |a Zengyou, He.  |t Data mining for bioinformatics applications.  |d Amsterdam, [Netherlands] : Woodhead Publishing, �2015  |h xvi, 83 pages  |k Woodhead Publishing series in biomedicine ; Number 76  |z 9780081001004 
830 0 |a Woodhead Publishing series in biomedicine ;  |v no. 76. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780081001004  |z Texto completo