Cargando…

Social sensing : building reliable systems on unreliable data /

Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Wang, Dong (Autor), Abdelzaher, Tarek (Autor), Kaplan, Lance (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Morgan Kaufmann, [2015]
Edición:First edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn909802602
003 OCoLC
005 20231120111953.0
006 m o d
007 cr unu||||||||
008 150521s2015 maua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d OPELS  |d N$T  |d YDXCP  |d DEBBG  |d OCLCF  |d DEBSZ  |d UAB  |d EBLCP  |d E7B  |d COO  |d OCLCQ  |d MERUC  |d U3W  |d D6H  |d CEF  |d OCLCQ  |d INT  |d OCLCQ  |d CUY  |d ZCU  |d ICG  |d DKC  |d AU@  |d OCLCQ  |d LQU  |d OCLCQ  |d DCT  |d OCLCQ  |d UKMGB  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB540086  |2 bnb 
016 7 |a 017125177  |2 Uk 
019 |a 907942398  |a 908074254  |a 913618826  |a 1105179655  |a 1105568789 
020 |a 9780128011317 
020 |a 0128011319 
020 |a 0128008679 
020 |a 9780128008676 
020 |z 9780128008676 
035 |a (OCoLC)909802602  |z (OCoLC)907942398  |z (OCoLC)908074254  |z (OCoLC)913618826  |z (OCoLC)1105179655  |z (OCoLC)1105568789 
050 4 |a QA76.585 
072 7 |a COM  |x 013000  |2 bisacsh 
072 7 |a COM  |x 014000  |2 bisacsh 
072 7 |a COM  |x 018000  |2 bisacsh 
072 7 |a COM  |x 067000  |2 bisacsh 
072 7 |a COM  |x 032000  |2 bisacsh 
072 7 |a COM  |x 037000  |2 bisacsh 
072 7 |a COM  |x 052000  |2 bisacsh 
082 0 4 |a 004.7  |2 23 
100 1 |a Wang, Dong,  |e author. 
245 1 0 |a Social sensing :  |b building reliable systems on unreliable data /  |c Dong Wang, Tarek Abdelzaher, Lance Kaplan. 
246 3 0 |a Building reliable systems on unreliable data 
250 |a First edition. 
264 1 |a Waltham, MA :  |b Morgan Kaufmann,  |c [2015] 
264 4 |c �2015 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed May 8, 2015). 
504 |a Includes bibliographical references and index. 
520 |a Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. 
505 0 |a Front Cover; Front Cover; Social Sensing: Building Reliable Systems on Unreliable Data; Copyright; Dedication; Contents; Acknowledgments; Authors; Dong Wang; Tarek Abdelzaher; Lance M. Kaplan; Foreword; Preface; Chapter 1: A new information age; 1.1 Overview; 1.2 Challenges; 1.3 State of the Art; 1.3.1 Efforts on Discount Fusion; 1.3.2 Efforts on Trust and Reputation Systems; 1.3.3 Efforts on Fact-Finding; 1.4 Organization; Chapter 2: Social Sensing Trends and Applications; 2.1 Information Sharing: The Paradigm Shift; 2.2 An Application Taxonomy; 2.3 Early Research; 2.4 The Present Time. 
505 8 |a 2.5 ANote on PrivacyChapter 3: Mathematical foundations of social sensing: An introductory tutorial; 3.1 AMultidisciplinary Background; 3.2 Basics of Generic Networks; 3.3 Basics of Bayesian Analysis; 3.4 Basics of Maximum Likelihood Estimation; 3.5 Basics of Expectation Maximization; 3.6 Basics of Confidence Intervals; 3.7 Putting It All Together; Chapter 4: Fact-finding in information networks; 4.1 Facts, Fact-Finders, and the Existence of Ground Truth; 4.2 Overview of Fact-Finders in Information Networks; 4.3 A Bayesian Interpretation of Basic Fact-Finding; 4.3.1 Claim Credibility. 
505 8 |a 4.3.2 Source Credibility4.4 The Iterative Algorithm; 4.5 Examples and Results; 4.6 Discussion; Appendix; Chapter 5: Social Sensing: A maximum likelihood estimation approach; 5.1 The Social Sensing Problem; 5.2 Expectation Maximization; 5.2.1 Background; 5.2.2 Mathematical Formulation; 5.2.3 Deriving the E-Step and M-Step; 5.3 The EM Fact-Finding Algorithm; 5.4 Examples and Results; 5.4.1 A Simulation Study; 5.4.2 A Geotagging Case Study; 5.4.3 A Real World Application; 5.5 Discussion; Chapter 6: Confidence bounds in social sensing; 6.1 The Reliability Assurance Problem. 
505 8 |a 6.2 Actual Cramer-Rao Lower Bound6.3 Asymptotic Cramer-Rao Lower Bound; 6.4 Confidence Interval Derivation; 6.5 Examples and Results; 6.5.1 Evaluation of Confidence Interval; 6.5.2 Evaluation of CRLB; Scalability study; Trustworthiness and assertiveness study; Robustness study; 6.5.3 Evaluation of Estimated False Positives/Negatives on Claim Classification; Scalability study; Trustworthiness and assertiveness study; Robustness study; 6.5.4 AReal World Case Study; 6.6 Discussion; Appendix; Chapter 7: Resolving conflicting observations and non-binary claims. 
505 8 |a 7.1 Handling Conflicting Binary Observations7.1.1 Extended Model; 7.1.2 Re-Derive the E-Step and M-Step; 7.1.3 The Binary Conflict EM Algorithm; 7.2 Handling Non-Binary Claims; 7.2.1 Generalized E and M Steps for Non-Binary Measured Variables; 7.2.2 The Generalized EM Algorithm for Non-Binary Measured Variables; 7.3 Performance Evaluation; 7.3.1 AReal World Application; 7.3.2 ASimulation Study for Conflicting Observations; 7.3.3 ASimulation Study for Non-Binary Claims; 7.4 Discussion; Appendix; Chapter 8: Understanding the social network; 8.1 Information Propagation Cascades. 
650 0 |a Social media. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 6 |a M�edias sociaux.  |0 (CaQQLa)000258927 
650 6 |a Exploration de donn�ees (Informatique)  |0 (CaQQLa)201-0300292 
650 6 |a Donn�ees volumineuses.  |0 (CaQQLa)000284673 
650 7 |a social media.  |2 aat  |0 (CStmoGRI)aat300312269 
650 7 |a COMPUTERS  |x Computer Literacy.  |2 bisacsh 
650 7 |a COMPUTERS  |x Computer Science.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Hardware  |x General.  |2 bisacsh 
650 7 |a COMPUTERS  |x Information Technology.  |2 bisacsh 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a COMPUTERS  |x Reference.  |2 bisacsh 
650 7 |a Big data  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Data mining  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Social media  |2 fast  |0 (OCoLC)fst01741098 
700 1 |a Abdelzaher, Tarek,  |e author. 
700 1 |a Kaplan, Lance,  |e author. 
776 0 8 |i Print version:  |a Wang, Dong.  |t Social Sensing : Building Reliable Systems on Unreliable Data.  |d Burlington : Elsevier Science, �2015  |z 9780128008676 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128008676  |z Texto completo