Cargando…

Marine systems identification, modeling and control /

Marine Systems Identification, Modeling and Control is a concise, stand-alone resource covering the theory and practice of dynamic systems and control for marine engineering students and professionals. Developed from a distance learning CPD course on marine control taught by the authors, the book pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Roskilly, Tony (Autor), Mikalsen, Rikard (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Kidlington, Oxford, UK : Butterworth-Heinemann, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Marine Systems Identification, Modeling, and Control
  • Copyright
  • Preface
  • Contents
  • Chapter One: Introduction
  • 1.1 Introduction to Control Systems
  • 1.2 History of Control Engineering
  • 1.3 Control System Structure
  • 1.3.1 Open-loop systems
  • 1.3.2 Closed-loop systems
  • 1.3.3 System structure
  • 1.3.4 Marine control system examples
  • 1.4 System Dynamics
  • 1.4.1 Dynamic response examples
  • 1.5 Advanced Control Engineering Topics
  • Nonlinear Control
  • Digital Control
  • Optimal Control
  • Robust Control
  • Intelligent ControlAdaptive Control
  • 1.6 Software for Control System Analysis and Design
  • Questions
  • References
  • Chapter Two: System Representation in the Time Domain
  • 2.1 Systems and System Study
  • 2.2 Marine System Types
  • 2.3 System Modeling
  • 2.3.1 Linear time-invariant models
  • 2.3.2 Initial conditions and inputs
  • Input Types
  • 2.3.3 Modeling fluid systems
  • Water Tank with Outlet
  • Water Tank with Inlet and Outlet
  • 2.3.4 Modeling mechanical systems
  • Mass on a Spring
  • Time-Domain Solution for the Mass-Spring System
  • Mass on Spring and Damper2.3.5 Modeling electrical systems
  • LC Circuits
  • LCR Circuits
  • 2.3.6 Other system types
  • Example: Ship Propulsion
  • 2.4 System Realities
  • 2.4.1 Continuous nonlinearity
  • 2.4.2 Discontinuous nonlinearity
  • 2.5 Standard Form of Differential Equations
  • 2.5.1 Time response of first-order systems
  • 2.5.2 Time response of undamped second-ordersystems
  • 2.5.3 Time response of damped second-order systems
  • 2.6 System Identification from Test Data
  • 2.7 Example: Modeling an Electric Pump Drive
  • Electrical Model
  • Mechanical ModelSummary
  • Questions
  • Chapter Three: System Transfer Functions
  • 3.1 Laplace Transforms
  • 3.1.1 Properties of Laplace transforms
  • 3.1.2 Laplace transform example
  • 3.2 Transfer Functions in the s-Domain
  • 3.2.1 System example: First-order system
  • 3.2.2 System example: Second-order system
  • 3.2.3 Initial and final value theorems
  • 3.3 s-Domain Poles and Zeros
  • 3.3.1 Influence on system dynamics
  • 3.4 Transient Response of First-Order Systems
  • 3.4.1 Impulse response
  • 3.4.2 Step response
  • 3.4.3 Ramp response
  • 3.4.4 Influence of pole placement on system response3.5 Transient Response of Second-Order Systems
  • 3.5.1 Impulse response
  • 3.5.2 Step response
  • 3.5.3 Example: Pole placement in the mass-spring-damper system
  • 3.6 Higher-Order Systems
  • 3.6.1 Dominant poles
  • 3.7 Electric Pump Drive in the s-Domain
  • Electrical Model
  • Mechanical Model
  • Total Model
  • Simulating Pump Drive Dynamic Response
  • Questions
  • Chapter Four: Feedback Control
  • 4.1 Block Diagram Reduction
  • 4.1.1 Block diagram reduction example