Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment /
Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment describes the historical evolution of quantitative structure-activity relationship (QSAR) approaches and their fundamental principles. This book includes clear, introductory coverage of the statistical m...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Academic Press, an imprint of Elsevier,
[2015]
�2015 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Background of QSAR and Historical Developments
- 1.1. Introduction
- 1.2. Physicochemical Aspects of Biological Activity of Drugs and Chemicals
- 1.3. Structure
- Activity Relationship
- 1.4. Historical Development of QSARs: a Journey of Knowledge Enrichment
- 1.5. Applications of QSAR
- 1.6. Regulatory Perspectives of QSAR
- 1.7. Overview and Conclusion
- References
- 2. Chemical Information and Descriptors
- 2.1. Introduction
- 2.2. Concept of Descriptors
- 2.3. Type of Descriptors
- 2.4. Descriptors Commonly Used in QSAR Studies
- 2.5. Overview and Conclusion
- References
- 3. Classical QSAR
- 3.1. Introduction
- 3.2. The Free
- Wilson Model
- 3.3. The Fujita
- Ban Model
- 3.4. The LFER Model
- 3.5. Kubinyi's Bilinear Model
- 3.6. The Mixed Approach
- 3.7. Overview and Conclusions
- References
- 4. Topological QSAR
- 4.1. Introduction
- 4.2. Topology: A Method of Chemical Structure Representation
- 4.3. Graphs and Matrices: Platforms for the Topological Paradigm
- 4.4. Topological Indices
- 4.5. Conclusion and Possibilities
- References
- 5.Computational Chemistry
- 5.1. Introduction
- 5.2.Computer Use in Chemistry
- 5.3. Conformational Analysis and Energy Minimization
- 5.4. Molecular Mechanics
- 5.5. Molecular Dynamics
- 5.6. Quantum Mechanics
- 5.7. Overview and Conclusion
- References
- 6. Selected Statistical Methods in QSAR
- 6.1. Introduction
- 6.2. Regression-Based Approaches
- 6.3. Classification-Based QSAR
- 6.4. Machine Learning Techniques
- 6.5. Conclusion
- References
- 7. Validation of QSAR Models
- 7.1. Introduction
- 7.2. Different Validation Methods
- 7.3.A Practical Example of the Calculation of Common Validation Metrics and the AD
- 7.4. QSAR model reporting format
- 7.5. Overview and Conclusion
- References
- 8. Introduction to 3D-QSAR
- 8.1. Introduction
- 8.2.Comparative Molecular Field Analysis
- 8.3.Comparative Molecular Similarity Indices Analysis
- 8.4. Molecular Shape Analysis
- 8.5. Receptor Surface Analysis
- 8.6. Other Approaches
- 8.7. Overview and Conclusions
- References
- 9. Newer QSAR Techniques
- 9.1. Introduction
- 9.2. HQSAR
- 9.3.G-QSAR
- 9.4. Other Approaches
- 9.5. Overview and Conclusions
- References
- 10. Other Related Techniques
- 10.1. Introduction
- 10.2. Pharmacophore
- 10.3. Structure-Based Design
- Docking
- 10.4.Combination of Structure- and Ligand-Based Design Tools
- 10.5. In sillco Screening of Chemical Libraries: VS
- 10.6. Overview and Conclusions
- References
- 11. SAR and QSAR in Drug Discovery and Chemical Design
- Some Examples
- 11.1. Introduction
- 11.2. Successful Applications of QSAR and Other In Sillco Methods: Representative Examples
- 11.3. Conclusion
- References
- 12. Future Avenues
- 12.1. Introduction
- 12.2. Application Areas
- 12.3. Conclusion
- References.