Cargando…

Hydrothermal analysis in engineering using control volume finite element method /

Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sheikholeslami, Mohsen Kandelousi (Autor), Ganji, Davood Domairry (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 SCIDIR_ocn904425400
003 OCoLC
005 20231120111944.0
006 m o d
007 cr |n|||||||||
008 150306s2015 enk oa 000 0 eng d
010 |a  2016301875 
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OPELS  |d CDX  |d OCLCF  |d OCLCO  |d UWO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d U3W  |d D6H  |d UKMGB  |d WYU  |d DEBBG  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB688775  |2 bnb 
016 7 |a 017529573  |2 Uk 
019 |a 1066619790  |a 1088952921  |a 1228531870 
020 |a 1336033746  |q (ebk) 
020 |a 9781336033740  |q (ebk) 
020 |z 9780128029503 
020 |a 9780081003619 
020 |a 0081003617 
020 |z 0128029501 
035 |a (OCoLC)904425400  |z (OCoLC)1066619790  |z (OCoLC)1088952921  |z (OCoLC)1228531870 
050 4 |a TA347.F5 
082 0 4 |a 518/.25  |2 23 
100 1 |a Sheikholeslami, Mohsen Kandelousi,  |e author. 
245 1 0 |a Hydrothermal analysis in engineering using control volume finite element method /  |c Mohsen Kandelousi Sheikholeslami, Davood Domairry Ganji. 
260 |a London :  |b Academic Press,  |c 2015. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Chapter 1: Control volume finite element method (CVFEM); 1.1. Introduction; 1.2. Discretization: Grid, Mesh, and Cloud; 1.2.1. Grid; 1.2.2. Mesh; 1.2.3. Cloud; 1.3. Element and interpolation shape functions; 1.4. Region of support and control volume; 1.5. Discretization and solution; 1.5.1. Steady-State Advection-Diffusion with Source Terms; 1.5.2. Implementation of Source Terms and Boundary Conditions; 1.5.3. Unsteady Advection-Diffusion with Source Terms -- 2.2. CVFEM stream function-vorticity solution for natural convection2.2.1. Definition of the Problem and Governing Equation; 2.2.2. Effect of Active Parameters; References; Chapter 3: Nanofluid flow and heat transfer in an enclosure; 3.1. Introduction; 3.2. Nanofluid; 3.2.1. Definition of Nanofluid; 3.2.2. Model Description; 3.2.3. Conservation Equations; 3.2.3.1. Single-phase model; 3.2.3.2. Two-phase model; 3.2.3.2.1. Continuity equation; 3.2.3.2.2. Nanoparticle continuity equation; 3.2.3.2.3. Momentum equation; 3.2.3.2.4. Energy equation -- 3.2.4. Physical Properties of Nanofluids in a Single-Phase Model3.2.4.1. Density; 3.2.4.2. Specific heat capacity; 3.2.4.3. Thermal expansion coefficient; 3.2.4.4. Electrical conductivity; 3.2.4.5. Dynamic viscosity; 3.2.4.6. Thermal conductivity; 3.3. Simulation of nanofluid in vorticity stream function form; 3.3.1. Mathematical Modeling of a Single-Phase Model; 3.3.1.1. Natural convection; 3.3.1.2. Force convection; 3.3.1.3. Mixed convection; 3.3.2. CVFEM for Nanofluid Flow and Heat Transfer (Single-Phase Model) -- 3.3.2.1. Natural convection heat transfer in a nanofluid-filled, inclined, L-shaped enclosure3.3.2.1.1. Problem definition; 3.3.2.1.2. Effect of active parameters; 3.3.2.2. Natural convection heat transfer in a nanofluid-filled, semiannulus enclosure; 3.3.2.2.1. Problem definition; 3.3.2.2.2. Effect of active parameters; 3.3.3. Two-Phase Model; 3.3.3.1. Natural convection; 3.3.3.2. Force convection; 3.3.3.3. Mixed convection; 3.3.4. CVFEM for Nanofluid Flow and Heat Transfer (Two-Phase Model); 3.3.4.1. Two-phase simulation of nanofluid flow and heat transfer using heatline analysis. 
504 |a Includes bibliographical references and index. 
520 |a Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro- 
650 0 |a Finite element method. 
650 0 |a Fluid dynamics  |x Mathematical models. 
650 0 |a Heat  |x Transmission  |x Mathematical models. 
650 6 |a M�ethode des �el�ements finis.  |0 (CaQQLa)201-0021899 
650 6 |a Dynamique des fluides  |0 (CaQQLa)201-0025811  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 6 |a Chaleur  |0 (CaQQLa)201-0000085  |x Transmission  |0 (CaQQLa)201-0000085  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 7 |a Finite element method  |2 fast  |0 (OCoLC)fst00924897 
650 7 |a Fluid dynamics  |x Mathematical models  |2 fast  |0 (OCoLC)fst00927982 
650 7 |a Heat  |x Transmission  |x Mathematical models  |2 fast  |0 (OCoLC)fst00953836 
700 1 |a Ganji, Davood Domairry,  |e author. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128029503  |z Texto completo