|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
SCIDIR_ocn904425400 |
003 |
OCoLC |
005 |
20231120111944.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
150306s2015 enk oa 000 0 eng d |
010 |
|
|
|a 2016301875
|
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d OPELS
|d CDX
|d OCLCF
|d OCLCO
|d UWO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d U3W
|d D6H
|d UKMGB
|d WYU
|d DEBBG
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB688775
|2 bnb
|
016 |
7 |
|
|a 017529573
|2 Uk
|
019 |
|
|
|a 1066619790
|a 1088952921
|a 1228531870
|
020 |
|
|
|a 1336033746
|q (ebk)
|
020 |
|
|
|a 9781336033740
|q (ebk)
|
020 |
|
|
|z 9780128029503
|
020 |
|
|
|a 9780081003619
|
020 |
|
|
|a 0081003617
|
020 |
|
|
|z 0128029501
|
035 |
|
|
|a (OCoLC)904425400
|z (OCoLC)1066619790
|z (OCoLC)1088952921
|z (OCoLC)1228531870
|
050 |
|
4 |
|a TA347.F5
|
082 |
0 |
4 |
|a 518/.25
|2 23
|
100 |
1 |
|
|a Sheikholeslami, Mohsen Kandelousi,
|e author.
|
245 |
1 |
0 |
|a Hydrothermal analysis in engineering using control volume finite element method /
|c Mohsen Kandelousi Sheikholeslami, Davood Domairry Ganji.
|
260 |
|
|
|a London :
|b Academic Press,
|c 2015.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Chapter 1: Control volume finite element method (CVFEM); 1.1. Introduction; 1.2. Discretization: Grid, Mesh, and Cloud; 1.2.1. Grid; 1.2.2. Mesh; 1.2.3. Cloud; 1.3. Element and interpolation shape functions; 1.4. Region of support and control volume; 1.5. Discretization and solution; 1.5.1. Steady-State Advection-Diffusion with Source Terms; 1.5.2. Implementation of Source Terms and Boundary Conditions; 1.5.3. Unsteady Advection-Diffusion with Source Terms -- 2.2. CVFEM stream function-vorticity solution for natural convection2.2.1. Definition of the Problem and Governing Equation; 2.2.2. Effect of Active Parameters; References; Chapter 3: Nanofluid flow and heat transfer in an enclosure; 3.1. Introduction; 3.2. Nanofluid; 3.2.1. Definition of Nanofluid; 3.2.2. Model Description; 3.2.3. Conservation Equations; 3.2.3.1. Single-phase model; 3.2.3.2. Two-phase model; 3.2.3.2.1. Continuity equation; 3.2.3.2.2. Nanoparticle continuity equation; 3.2.3.2.3. Momentum equation; 3.2.3.2.4. Energy equation -- 3.2.4. Physical Properties of Nanofluids in a Single-Phase Model3.2.4.1. Density; 3.2.4.2. Specific heat capacity; 3.2.4.3. Thermal expansion coefficient; 3.2.4.4. Electrical conductivity; 3.2.4.5. Dynamic viscosity; 3.2.4.6. Thermal conductivity; 3.3. Simulation of nanofluid in vorticity stream function form; 3.3.1. Mathematical Modeling of a Single-Phase Model; 3.3.1.1. Natural convection; 3.3.1.2. Force convection; 3.3.1.3. Mixed convection; 3.3.2. CVFEM for Nanofluid Flow and Heat Transfer (Single-Phase Model) -- 3.3.2.1. Natural convection heat transfer in a nanofluid-filled, inclined, L-shaped enclosure3.3.2.1.1. Problem definition; 3.3.2.1.2. Effect of active parameters; 3.3.2.2. Natural convection heat transfer in a nanofluid-filled, semiannulus enclosure; 3.3.2.2.1. Problem definition; 3.3.2.2.2. Effect of active parameters; 3.3.3. Two-Phase Model; 3.3.3.1. Natural convection; 3.3.3.2. Force convection; 3.3.3.3. Mixed convection; 3.3.4. CVFEM for Nanofluid Flow and Heat Transfer (Two-Phase Model); 3.3.4.1. Two-phase simulation of nanofluid flow and heat transfer using heatline analysis.
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro-
|
650 |
|
0 |
|a Finite element method.
|
650 |
|
0 |
|a Fluid dynamics
|x Mathematical models.
|
650 |
|
0 |
|a Heat
|x Transmission
|x Mathematical models.
|
650 |
|
6 |
|a M�ethode des �el�ements finis.
|0 (CaQQLa)201-0021899
|
650 |
|
6 |
|a Dynamique des fluides
|0 (CaQQLa)201-0025811
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
6 |
|a Chaleur
|0 (CaQQLa)201-0000085
|x Transmission
|0 (CaQQLa)201-0000085
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
7 |
|a Finite element method
|2 fast
|0 (OCoLC)fst00924897
|
650 |
|
7 |
|a Fluid dynamics
|x Mathematical models
|2 fast
|0 (OCoLC)fst00927982
|
650 |
|
7 |
|a Heat
|x Transmission
|x Mathematical models
|2 fast
|0 (OCoLC)fst00953836
|
700 |
1 |
|
|a Ganji, Davood Domairry,
|e author.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128029503
|z Texto completo
|