Cargando…

Implantable biomedical microsystems : design principles and applications /

Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable bio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bhunia, Swarup (Editor ), Majerus, Steve (Editor ), Sawan, Mohamad (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : William Andrew, an imprint of Elsevier, [2015]
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover; Implantable Biomedical Microsystems: Design Principles and Applications; Copyright; Contents; Contributors; Preface; Part I: Design Principles for Bioimplantable Systems; Chapter 1: Introduction; Part I: Design Principles for Bioimplantable Systems; Chapter 2: Electrical Interfaces for Recording, Stimulation, and Sensing; Chapter 3: Analogue Front-End and Telemetry Systems; Chapter 4: Signal processing hardware; Chapter 5: Energy Management Integrated Circuits for Wireless Power Transmission; Chapter 6: System Integration and Packaging
  • Chapter 7: Clinical and Regulatory Considerations of Implantable Medical DevicesChapter 8: Reliability and Security of Implantable and Wearable Medical Devices; Part II: Applications of Bioimplantable Systems; Chapter 9: Electrical biosensors: peripheral nerve sensors; Chapter 10: Electrodes for Electrical Conduction Block of Peripheral Nerve; Chapter 11: Implantable Bladder Pressure Sensor for Chronic Application; Chapter 12: Neural Recording Interfaces for Intracortical Implants; Chapter 13: Implantable Imaging System for Automated Monitoring of Internal Organs; References
  • Chapter 2: Electrical interfaces for recording, stimulation, and sensing2.1. Introduction; 2.2. Electrode Design Considerations; 2.3. Electrode Designs; 2.3.1. Microwire Probes; 2.3.2. Silicon-Based Devices; 2.3.3. Polymer-Based Devices; 2.3.3.1. General considerations; 2.3.3.2. Polyimide; 2.3.3.3. Polydimethylsiloxane; 2.3.3.4. Parylene; 2.3.3.5. Liquid crystal polymer; 2.3.3.6. Polymer nanocomposites; 2.3.3.7. Issues; 2.4. Emerging Design Trends; 2.4.1. New Materials and Designs for Enhanced Bio-integration; 2.4.2. Waveguides for Implanted Optogenetic Stimulation Systems; References
  • Chapter 3: Analog front-end and telemetry systems3.1. Introduction; 3.2. Analog Front-End System; 3.3. Front-End Amplifier Design; 3.4. Simulation Circuit Design; 3.5. Telemetry System Introduction; 3.6. RF Power Transfer Circuit; 3.7. Data Telemetry Circuit; 3.8. Summary; Acknowledgment; Chapter 4: Signal processing hardware; 4.1. Introduction; 4.2. Hardware Architecture of the Signal Processing Systems; 4.3. Analog, Digital, and Mixed-Signal Processors; 4.3.1. Signal Processing Using Analog Circuits; 4.3.1.1. Analog signal processing of neural signals
  • Low-power analog processor for automatic neural spike detectionLow-power analog processor for decoding of neural signals from the motor cortex; Other analog processors of neural signals; 4.3.1.2. Low-power analog processor for cochlear implants; 4.3.1.3. Ultralow-power analog processor for ECG acquisition and feature extraction; 4.3.2. Digital Signal Processing; 4.3.2.1. Choosing the right processor for digital signal processing; General-purpose processors (GPPs); Microcontrollers (MCU); Digital signal processors (DSPs); Application-specific standard products (ASSPs)