Cargando…

Advances in artificial transportation systems and simulation /

The Intelligent Systems Series encompasses theoretical studies, design methods, and real-world implementations and applications. It publishes titles in three core sub-topic areas: Intelligent Automation, Intelligent Transportation Systems, and Intelligent Computing. Titles focus on professional and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Rossetti, Rosaldo J. F. (Editor ), Liu, Ronghui (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego, California : Elsevier/Academic Press, [2015]
Colección:Intelligent systems series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright Page; Table of Contents; List of contributors; Preface; Chapter 1
  • ITSUMO: An Agent-Based Simulator for Intelligent Transportation Systems; 1.1
  • Introduction and Motivation; 1.2
  • Description of the Simulator; 1.2.1
  • Microscopic Simulation Model and Simulation Kernel; 1.2.2
  • Database Module; 1.2.3
  • Output Module: Statistics and Visualization; 1.3
  • Control: Traffic Light Agent Module; 1.3.1
  • Greedy Traffic Light Agent; 1.3.2
  • Reinforcement Learning-Based Methods; 1.3.3
  • Swarm-Intelligence Inspired Signal Plan Choice; 1.4
  • Demand.
  • 1.4.1
  • Routing of the Demand1.4.2
  • Deadlock Handling; 1.4.3
  • Driver Definition; 1.4.4
  • Drivers and En-Route Replanning; 1.5
  • Case-Study: Aggregating Intelligence to Traffic Simulation; 1.6
  • Conclusion; Acknowledgment; References; Chapter 2
  • A Pattern-Based Framework for Building Self-Organizing Multi-Agent Systems; 2.1
  • Introduction; 2.2
  • JASOF; 2.2.1
  • Main Idea; 2.2.2
  • JASOF Structure; 2.2.2.1
  • Environment; 2.2.2.2
  • Agent location; 2.2.2.3
  • Diffusion pattern; 2.2.2.4
  • Evaporation pattern; 2.2.2.5
  • Aggregation pattern; 2.2.2.6
  • Replication pattern; 2.2.3
  • JASOF Hotspots.
  • 2.3
  • Case Study: A Self-Organized Automatic Guided Vehicle2.3.1
  • Main Idea; 2.3.2
  • Destination Agent; 2.3.3
  • Warehouse Agent; 2.3.4
  • Transporter Agent; 2.3.5
  • Location Agent; 2.3.6
  • Execution; 2.3.7
  • System Composition; 2.4
  • Related Work; 2.5
  • Conclusions and Future Work; Acknowledgment; References; Chapter 3
  • An Agent Methodology for Processes, the Environment, and Services; 3.1
  • Introduction; 3.2
  • Background; 3.3
  • Analysis and Design for MAS; 3.3.1
  • Scenario Description and Early Requirements Analysis; 3.3.2
  • Analysis Phase; 3.3.3
  • Architectural Design.
  • 3.3.4
  • Detailed Design3.4
  • Discussion and Future Work; Acknowledgment; References; Chapter 4
  • A Role-Based Method for Analyzing Supply Chain Models; 4.1
  • Introduction; 4.2
  • Related Work; 4.3
  • A Framework of Supply Chain Roles, Responsibilities and Interactions; 4.3.1 Roles; 4.3.2
  • Responsibilities; 4.3.3
  • Interaction; 4.3.4
  • An Illustrating Example; 4.4
  • A Method for Analyzing Supply Chain Simulation Models; 4.5
  • Applicability and Validity of the Framework and Analysis Method; 4.5.1
  • Analysis of the TAPAS Simulation Model.
  • 4.5.2
  • Analysis of a Supply Chain Model by Strader et al. (1998)4.5.3
  • Analysis of a Supply Chain Model by Gjerdrum et al. (2001); 4.5.4
  • Discrete Event Simulation of a Food Supply Chain; 4.5.5
  • Dynamic Simulation of a Short Life Cycle Product Supply Chain; 4.6
  • Concluding Remarks and Future Work; References; Chapter 5
  • Applying Delegate MAS Patterns in Designing Solutions for Dynamic Pickup and Delivery Problems; 5.1
  • Introduction; 5.2
  • Related Work; 5.2.1
  • Combinatorial Optimization-Based Approaches for Solving PDP; 5.2.2
  • MAS-Based Approaches for Solving PDP.
  • 5.2.3
  • Patterns for MAS.