Cargando…

Polymer nanoclay composites /

There is a major lack of fundamental knowledge and understanding on the interaction between a filler and the polymer matrix. When it comes to nanoscale fillers, such as layered silicates, carbon nanotubes, graphene or cellulose nanofibers it is even more important to know accurate structure-property...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Laske, Stephan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; Waltham, MA : Elsevier Ltd., [2015]
Edición:First edition.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Polymer Nanoclay Composites; Copyright Page; Contents; Introduction; Acknowledgments; References; 1 Processing of calcium montmorillonites for use in polymers; 1.1 Introduction; 1.2 Definitions; 1.3 Morphology of montmorillonite which is important for use in the polymer industry; 1.4 Introduction-the activation of calcium bentonites to achieve a high aspect ratio; 1.4.1 Problems in determining the soda ash dosage for the deposit-specific optimized cation exchange; 1.4.2 Chemical-mineralogical basis of the alkaline activation of bentonites and technical problems in the realization
  • 1.4.3 Thixotropy and yield point of bentonite suspensions1.4.4 Definitions of a chemical and technical degree of activation; 1.4.5 Activation technique; 1.4.6 Determination of the yield point; 1.5 Criteria for the selection of calcium bentonites, their alkaline activation, and the achievable aspect ratio; 1.6 Conclusions; References; 2 Chemical/physical preprocessing of nanoclay particles; 2.1 Introduction-montmorillonite; 2.2 Activation; 2.2.1 Activation by acids; 2.2.2 Characterization of activated MMT; 2.2.2.1 EDX spectroscopy; 2.2.2.2 FTIR spectroscopy; 2.2.2.3 Thermogravimetric analysis
  • 2.2.2.4 Medium angle X-ray scattering2.3 Metal cation exchange; 2.3.1 Metal-(II)-cations; 2.3.2 Metal-(III)-cation; 2.3.3 Characterization of metal cation-exchanged montmorillonite; 2.3.3.1 EDX spectroscopy; 2.3.3.2 FTIR spectroscopy; 2.3.3.3 Thermogravimetry; 2.4 Organomodification; 2.4.1 Amino acid as modification reagent; 2.4.2 Characterization of organomodified montmorrilonite; 2.4.2.1 FTIR spectroscopy; 2.4.2.2 Thermogravimetric analysis; 2.4.2.3 MAXS measurements; 2.5 Conclusions; References; 3 Processing of polymer-nanoclay composites; 3.1 Nanoclay Processing Basics
  • 3.1.1 "Melt mixing" (compounding)3.1.2 Characteristic process parameters; 3.1.2.1 Residence time characteristics; 3.1.2.2 Specific energy input; 3.1.2.3 Case study: influence of induced shear energy on the properties of polyolefine nanocomposites [1]; 3.1.2.3.1 Materials; 3.1.2.3.2 Production of nanocomposites; 3.1.2.3.3 Specimen; 3.1.2.3.4 Tests; 3.1.3 Calculation of the shear energy for extrusion and compounding; 3.1.4 Calculation of the shear energy for injection molding; 3.1.5 Visualization of nanoclay dispersion; 3.1.6 Influence of shearing on Young's modulus and breaking strain
  • 3.1.7 Influence on internal pressure creep time and longitudinal shrinkage3.1.8 Conclusions; 3.2 Advanced compounding; 3.2.1 Case study: extrusion of PP nanocomposites by advanced compounding [2]; 3.2.1.1 Materials and methods; 3.2.1.1.1 Materials; 3.2.1.1.2 Process design; 3.2.1.1.3 Extensional melt rheology; 3.2.1.2 Results and discussion; 3.3 Injection mold compounding; 3.3.1 Case Study; 3.3.1.1 Experimental; 3.3.1.2 Results; 3.4 Conclusions; References; 4 Characterization of polymer nanocomposites based on layered silicates; 4.1 Introduction; 4.2 Offline characterization