|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_ocn898772152 |
003 |
OCoLC |
005 |
20231117033109.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141227s1988 nyu ob 001 0 eng d |
010 |
|
|
|z 87035038
|
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d IDEBK
|d N$T
|d OCLCQ
|d N$T
|d E7B
|d OCLCF
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d DEBBG
|d YDXCP
|d OCLCQ
|d MERUC
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|d INARC
|d OCLCO
|
019 |
|
|
|a 610154702
|a 1100958787
|a 1358645964
|
020 |
|
|
|a 9781483262222
|q (electronic bk.)
|
020 |
|
|
|a 1483262227
|q (electronic bk.)
|
020 |
|
|
|z 9780123073303
|
020 |
|
|
|z 0123073308
|
035 |
|
|
|a (OCoLC)898772152
|z (OCoLC)610154702
|z (OCoLC)1100958787
|z (OCoLC)1358645964
|
050 |
|
4 |
|a QA927
|b .G86 1988
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.3/53
|
100 |
1 |
|
|a G�unther, Paul,
|d 1926-
|
245 |
1 |
0 |
|a Huygens' principle and hyperbolic equations /
|c Paul G�unther.
|
260 |
|
|
|a Boston :
|b Academic Press,
|c �1988.
|
300 |
|
|
|a 1 online resource (lvii, 847 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Perspectives in mathematics ;
|v v. 5
|
504 |
|
|
|a Includes bibliographical references (pages 833-847) and index.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Huygens' Principle and Hyperbolic Equations; Copyright Page; Dedication; Table of Contents; PREFACE; ACKNOWLEDGEMENTS; INTRODUCTION; CHAPTER I; 1. Normal domains; 2. The causal structure of space-times; 3. Vector bundles; 4. The wave equation for differential forms in non-euclidean spaces; 5. A spinor calculus; Notes and References; CHAPTER II. RIESZ DISTRIBUTIONS; 1. The Riesz distributions in the Minkowski space; 2. The Riesz distribution in curved space-times; 3. Some generalizations; Notes and References; CHAPTER III. THE FUNDAMENTAL SOLUTIONS.
|
505 |
8 |
|
|a 1. The Hadamard coefficients2. B-Series; 3. The fundamental solutions; 4. Applications of the fundamental solutions; 5. The Cauchv problem; Notes and References; CHAPTER IV. HUYGENS' OPERATORS; 1. Hadamard's Criterion; 2. Huygens' triples; 3. Diversors. General wave families; 4. Maxwell's equations. Dirac's equations; Notes and References; CHAPTER V. THE EULER-POISSON-DARBOUX EQUATION; 1. An Application of the Method of Descent; 2. The singular Cauchy problem; 3. Huygens' principle for the EPD-equation; 4. Stellmacher's equations.
|
505 |
8 |
|
|a 5. Elliptic operators with vanishing first Hadamard coefficientAppendix (Proof of Theorem 5.13 (i)); 6. Relations to spectral geometry; Notes and References; CHAPTER VI. TRANSFORMATION THEORY; 1. The bundle connection associated to an operator P; 2. A property of the Hadamard coefficients; 3. Conformai gauge transformations of an operator P; 4. Tensors with simple transformation law; 5. The moments of a normal hyperbolic operator (even dimension); 6. The moments for Maxwell's equations; Notes and References.
|
505 |
8 |
|
|a CHAPTER VII. SOME THEOREMS ON HUYGENS' OPERATORS OVER FOUR-DIMENSIONAL SPACE-TIMES1. Some preparatory transformations; 2. The moments of order d"3; 3. Applications to Huygens' operators in a four-dimensional space-time; 4. The case of conformally flat metrics; Notes and References; CHAPTER VIII. PLANE WAVE MANIFOLDS AND HUYGENS' PRINCIPLE; 1. Introduction. Results; 2. pp- and plane wave manifolds; 3. Huygens' principle for plane wave manifolds; 4. A characterization of plane wave manifolds; 5. Some conformally invariant tensors; 6. Testing coefficients by pp-metrics.
|
505 |
8 |
|
|a 7. Testing coefficients by metrics of constant curvatureNotes and References; TABLE I: Identities for the Weyl tensor; TABLE II: Moments of order d"4 in four dimensions; TABLE III: Some formulas for pp-metrics; TABLE IV: Some formulas for plane wave metrics; APPENDIX I: METRIC AND CURVATURE IN NORMAL COORDINATES; APPENDIX II: WEAK HUYGENS' OPERATORS By V. W�unsch; APPENDIX III: HUYGENS' PRINCIPLE FOR SPIN TENSOR EQUATIONS By V. W�unsch; INDEX; BIBLIOGRAPHY.
|
650 |
|
0 |
|a Wave-motion, Theory of.
|
650 |
|
0 |
|a Huygens' principle.
|
650 |
|
0 |
|a Differential equations, Hyperbolic.
|
650 |
|
6 |
|a Th�eorie du mouvement ondulatoire.
|0 (CaQQLa)201-0015063
|
650 |
|
6 |
|a Principe de Huygens.
|0 (CaQQLa)201-0360338
|
650 |
|
6 |
|a �Equations diff�erentielles hyperboliques.
|0 (CaQQLa)201-0041236
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Hyperbolic
|2 fast
|0 (OCoLC)fst00893463
|
650 |
|
7 |
|a Huygens' principle
|2 fast
|0 (OCoLC)fst00964454
|
650 |
|
7 |
|a Wave-motion, Theory of
|2 fast
|0 (OCoLC)fst01172888
|
653 |
|
0 |
|a Differential equations, Hyperbolic
|
653 |
|
0 |
|a Huygens' principle
|
653 |
|
0 |
|a Wave-motion, Theory of
|
776 |
0 |
8 |
|i Print version:
|a G�unther, Paul, 1926-
|t Huygens' principle and hyperbolic equations.
|d Boston : Academic Press, �1988
|z 0123073308
|w (DLC) 87035038
|w (OCoLC)17412337
|
830 |
|
0 |
|a Perspectives in mathematics ;
|v v. 5.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780123073303
|z Texto completo
|