MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_ocn898772152
003 OCoLC
005 20231117033109.0
006 m o d
007 cr cnu---unuuu
008 141227s1988 nyu ob 001 0 eng d
010 |z  87035038  
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d IDEBK  |d N$T  |d OCLCQ  |d N$T  |d E7B  |d OCLCF  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d DEBBG  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d UKAHL  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO 
019 |a 610154702  |a 1100958787  |a 1358645964 
020 |a 9781483262222  |q (electronic bk.) 
020 |a 1483262227  |q (electronic bk.) 
020 |z 9780123073303 
020 |z 0123073308 
035 |a (OCoLC)898772152  |z (OCoLC)610154702  |z (OCoLC)1100958787  |z (OCoLC)1358645964 
050 4 |a QA927  |b .G86 1988 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.3/53 
100 1 |a G�unther, Paul,  |d 1926- 
245 1 0 |a Huygens' principle and hyperbolic equations /  |c Paul G�unther. 
260 |a Boston :  |b Academic Press,  |c �1988. 
300 |a 1 online resource (lvii, 847 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Perspectives in mathematics ;  |v v. 5 
504 |a Includes bibliographical references (pages 833-847) and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Huygens' Principle and Hyperbolic Equations; Copyright Page; Dedication; Table of Contents; PREFACE; ACKNOWLEDGEMENTS; INTRODUCTION; CHAPTER I; 1. Normal domains; 2. The causal structure of space-times; 3. Vector bundles; 4. The wave equation for differential forms in non-euclidean spaces; 5. A spinor calculus; Notes and References; CHAPTER II. RIESZ DISTRIBUTIONS; 1. The Riesz distributions in the Minkowski space; 2. The Riesz distribution in curved space-times; 3. Some generalizations; Notes and References; CHAPTER III. THE FUNDAMENTAL SOLUTIONS. 
505 8 |a 1. The Hadamard coefficients2. B-Series; 3. The fundamental solutions; 4. Applications of the fundamental solutions; 5. The Cauchv problem; Notes and References; CHAPTER IV. HUYGENS' OPERATORS; 1. Hadamard's Criterion; 2. Huygens' triples; 3. Diversors. General wave families; 4. Maxwell's equations. Dirac's equations; Notes and References; CHAPTER V. THE EULER-POISSON-DARBOUX EQUATION; 1. An Application of the Method of Descent; 2. The singular Cauchy problem; 3. Huygens' principle for the EPD-equation; 4. Stellmacher's equations. 
505 8 |a 5. Elliptic operators with vanishing first Hadamard coefficientAppendix (Proof of Theorem 5.13 (i)); 6. Relations to spectral geometry; Notes and References; CHAPTER VI. TRANSFORMATION THEORY; 1. The bundle connection associated to an operator P; 2. A property of the Hadamard coefficients; 3. Conformai gauge transformations of an operator P; 4. Tensors with simple transformation law; 5. The moments of a normal hyperbolic operator (even dimension); 6. The moments for Maxwell's equations; Notes and References. 
505 8 |a CHAPTER VII. SOME THEOREMS ON HUYGENS' OPERATORS OVER FOUR-DIMENSIONAL SPACE-TIMES1. Some preparatory transformations; 2. The moments of order d"3; 3. Applications to Huygens' operators in a four-dimensional space-time; 4. The case of conformally flat metrics; Notes and References; CHAPTER VIII. PLANE WAVE MANIFOLDS AND HUYGENS' PRINCIPLE; 1. Introduction. Results; 2. pp- and plane wave manifolds; 3. Huygens' principle for plane wave manifolds; 4. A characterization of plane wave manifolds; 5. Some conformally invariant tensors; 6. Testing coefficients by pp-metrics. 
505 8 |a 7. Testing coefficients by metrics of constant curvatureNotes and References; TABLE I: Identities for the Weyl tensor; TABLE II: Moments of order d"4 in four dimensions; TABLE III: Some formulas for pp-metrics; TABLE IV: Some formulas for plane wave metrics; APPENDIX I: METRIC AND CURVATURE IN NORMAL COORDINATES; APPENDIX II: WEAK HUYGENS' OPERATORS By V. W�unsch; APPENDIX III: HUYGENS' PRINCIPLE FOR SPIN TENSOR EQUATIONS By V. W�unsch; INDEX; BIBLIOGRAPHY. 
650 0 |a Wave-motion, Theory of. 
650 0 |a Huygens' principle. 
650 0 |a Differential equations, Hyperbolic. 
650 6 |a Th�eorie du mouvement ondulatoire.  |0 (CaQQLa)201-0015063 
650 6 |a Principe de Huygens.  |0 (CaQQLa)201-0360338 
650 6 |a �Equations diff�erentielles hyperboliques.  |0 (CaQQLa)201-0041236 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential equations, Hyperbolic  |2 fast  |0 (OCoLC)fst00893463 
650 7 |a Huygens' principle  |2 fast  |0 (OCoLC)fst00964454 
650 7 |a Wave-motion, Theory of  |2 fast  |0 (OCoLC)fst01172888 
653 0 |a Differential equations, Hyperbolic 
653 0 |a Huygens' principle 
653 0 |a Wave-motion, Theory of 
776 0 8 |i Print version:  |a G�unther, Paul, 1926-  |t Huygens' principle and hyperbolic equations.  |d Boston : Academic Press, �1988  |z 0123073308  |w (DLC) 87035038  |w (OCoLC)17412337 
830 0 |a Perspectives in mathematics ;  |v v. 5. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123073303  |z Texto completo