General topology and its relations to modern analysis and algebra II : proceedings of the Second Prague Topological Symposium, 1966 /
General Topology and Its Relations to Modern Analysis and Algebra 2.
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , , |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
New York :
Academic Press,
1967.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; General Topology and its Relations to Modern Analysis and Algebra II; Copyright Page; Foreword; FROM THE REPORT OF THE ORGANIZING COMMITTEE; LIST OF FOREIGN PARTICIPANTS; LIST OF CZECHOSLOVAK PARTICIPANTS; LIST OF COMMUNICATIONS; CHAPTER 1. REMARKS ON AN ALGEBRAIC STRUCTUREFOR A TOPOLOGY; CHAPTER 2. O PA3MEPHOCTH dm TOnOJIOrHHECKHX IIPOCTPAHCTB; CHAPTER 3. PROJECTION-SPECTRA; 1. Definition of the projection spectrum and its limit space.; 2. The spectrum and the finite spectrum of a space; 3. Strengthening and weakening of a spectrum. The absolute.
- 4. Remarks on the history and further development of the theory of absolutes. Bibliography; CHAPTER 4. SOME SPECIAL METHODS OF HOMEOMORPHISMTHEORY IN INFINITE-DIMENSIONAL TOPOLOGY; 1. Introduction; 2. EstablishingHomeomorphisms; 3. Homeomorphism ExtensionTheorems; References; CHAPTER 5. POINT COUNTABLE OPEN COVERINGSIN COUNTABLY COMPACT SPACES; References; CHAPTER 6. ON SOME RESULTS CONCERNINGk-SPACES; Literature; CHAPTER 7. REMARKS ON PRODUCT SPACES; References; CHAPTER 8. PARACOMPACT SUBSETS; References; CHAPTER 9. PROJECTIVE COVERS IN CERTAIN CATEGORIESOF TOPOLOGICAL SPACES; References.
- CHAPTER 10. A HEREDITARILY INFINITE DIMENSIONAL SPACE1. Introduction; 2. Description ofthe Ri's and Ki's; 3. Preventing 1-dimensionality; 4. Essential maps; 5. Variations in the definition of K; 6. Infinite dimensional continuous curves; 7. Questions; Reference; CHAPTER11. TWO CLASSES OF ALMOST PERIODIC FUNCTIONSON TOPOLOGICAL To-GROUPS; References; CHAPTER 12. EINE FIXIERTE KURVE IN E3; 1. Einleitung; 2. Knoten und Vollringe; 3. Konstruktion der Kurve K; 4. K ist fixiert; Literaturverzeichnis; CHAPTER 13. CIRCUMSCRIBING CONVEX SETS; Bibliography.
- CHAPTER 14. BEZIEHUNGEN ZWISCHEN GEWISSEN TOPOLOGIENIN NOETHERSCHEN RINGENLiteratur; CHAPTER 15. BOREL SUBSETS OF METRIC SEPARABLE SPACES; References; CHAPTER 16. DIFFERENTIAL STRUCTURES; CHAPTER 17. LOCALLY COMPACT REALCOMPACTIFICATIONS; References; CHAPTER 18. SYNTOPOGENE HALBGRUPPEN; Literatur; CHAPTER 19. ABGESCHW�ACHTE TRENNUNGSAXIOME; CHAPTER 20. RICHTUNGSR�AUME UND RICHTUNGSDIMENSION; Literatur; CHAPTER 21. ORDER STRUCTURES AND TOPOLOGICAL STRUCTURES; References; CHAPTER 22. PRECLOSED MULTIVALUED MAPPINGS; References; CHAPTER 23. ON URYSOHN'S LEMMA; Reference.
- CHAPTER 24. ON FINITETo-SPACESReferences; CHAPTER 25. SOME NEW CONCEPTS OF DIMENSION AND THEIR GENERALIZATION; References; CHAPTER 26. ON SEPARATION AND APPROXIMATION OF REALFUNCTIONS DEFINED ON A CHOQUET SIMPLEX; 1. Introduction; 2. Preliminaries; 3. SemicontinuousW -concave functions; 4. A separation property; 5. A Weierstrass-Stone theorem for simplexes; References; CHAPTER 27. EXTREMAL DISCONNECTEDNESS AND DYADICITY; References; CHAPTER 28. QUELQUES D�EMONSTRATIONS NOUVELLES DANSLA TH�EORIE DES ENSEMBLES BORELIENS; Travaux cit�es.