Cargando…

Algebra. Volume 1.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: R�edei, L.
Otros Autores: Sneddon, I. N., Stark, M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Pergamon Press, 1967.
Colección:International series in pure and applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 SCIDIR_ocn898772077
003 OCoLC
005 20231120111907.0
006 m o d
007 cr cnu---unuuu
008 141227s1967 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d N$T  |d OCLCQ  |d N$T  |d OPELS  |d E7B  |d OCLCF  |d DEBSZ  |d S4S  |d YDXCP  |d COO  |d OCL  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 896406346  |a 922373590 
020 |a 9781483222646  |q (electronic bk.) 
020 |a 1483222640  |q (electronic bk.) 
020 |a 1483197611 
020 |a 9781483197616 
020 |z 9781483197616 
035 |a (OCoLC)898772077  |z (OCoLC)896406346  |z (OCoLC)922373590 
050 4 |a QA155 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a R�edei, L. 
245 1 0 |a Algebra.  |n Volume 1. 
260 |a Oxford :  |b Pergamon Press,  |c 1967. 
300 |a 1 online resource (843 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International Series in Pure and Applied Mathematics ;  |v v. 91-1 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Algebra; Copyright Page; Table of Contents; PREFACE TO THE GERMAN EDITION; PREFACE TO THE ENGLISH EDITION; LIST OF SYMBOLS; CHAPTER I. SET-THEORETICAL PRELIMINARIES; 1. Sets; 2. Relations; 3. Mappings; 4. Multiplication of Mappings; 5. Functions; 6. Classification of a Set. Equivalence Relations; 7. Natural Numbers; 8. Equipotent Sets; 9. Ordered and Semiordered Sets; 10. Well-ordered Sets; 11*. The Lemma of Kuratowski-Zorn; 12. The Special Lemma of Kuratowski-Zorn; 13. The Lemma of Teichmiiller-Tukey; 14. The Theorem of Hausdorff-Birkhoff. 
505 8 |a 15. Theorem of Well-ordering 16. Transfinite Induction; CHAPTER II. STRUCTURES; 17. Compositions; 18. Operators; 19. Structures; 20. Semigroups; 21. Groups; 22. Modules; 23. Rings; 24. Skew Fields; 25. Substructures; 26. Generating Elements; 27. Some Important Substructures; 28. Isomorphisms; 29. Homomorphisms; 30. Factor Structures; 31. The Homomorphy Theorem; 32. Automorphisms. Endomorphisms. Autohomomorphisms. Meromorphisms; 33. Isomorphic Structures with the Same Elements; 34. Skew Products; 35. Structure Extensions. 
505 8 |a 36. Representation of Groups by Permutation Groups 37. Endomorphism Rings; 38. Representation of Rings by Endomorphism Rings; 39. Anti-isomorphisms. Anti-automorphisms; 40. Complexes; 41. Cosets. Residue Classes; 42. Normal Divisors. Ideals; 43. Alternating Groups; 44. Direct Products. Direct Sums; 45. Basis; 46. Congruences; 47. Quotient Structures; 48. Difference Structures; 49. Free Structures. Structures Defined by Equations; 50. Schreier Group Extensions; 51. The Holomorph of a Group; 52. Everett Ring Extensions; 53. Double Homothetisms. 
505 8 |a 54. The Holomorphs of a Ring 55. The Two Isomorphy Theorems; 56. Simple Factor Structures; 57. Commutative Factor Structures; 58, Zassenhaus's Lemma; 59. Schreier's Main Theorem and the Jordan-H�older Theorem; 60. Lattices; CHAPTER III. OPERATOR STRUCTURES; 61. Operator Structures; 62. Operator Groups, Operator Modules and Operator Rings; 63. Remak-Krull-Schmidt Theorem; 64. Vector Spaces. Double Vector Spaces. Algebras. Double Algebras; 65. Cross Products; 66. Monomial Rings; 67. Polynomial Rings; 68. Linear Mappings; 69. Full Matrix Rings; 70. Linear Groups. 
505 8 |a 71. Alternating Rings 72. Determinants; 73. Cramer's Rule; 74. Characteristic Polynomials; 75. Norms and Traces; 77. The Quaternion Group; 78. Quaternion Rings; CHAPTER IV. DIVISIBILITY IN RINGS; 79. Factor Decompositions and Divisibility; 80. Ideals and Divisibility; 81. Principal Ideal Rings; 82. Euclidean Rings; 83. Euclid's Algorithm; 84. The Ring of the Integers; 85. Szendrei's Theorem; 86. Polynomial Rings over Skew Fields; 87. The Residue Theorem for Polynomials; 88. Gauss's Theorem; 89.* The Ring of Integral Quaternions. 
500 |a Chapter v. finite abelian groups. 
500 |a Algebra. 
650 0 |a Algebra. 
650 6 |a Alg�ebre.  |0 (CaQQLa)201-0001155 
650 7 |a algebra.  |2 aat  |0 (CStmoGRI)aat300054523 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Algebra  |2 fast  |0 (OCoLC)fst00804885 
700 1 |a Sneddon, I. N. 
700 1 |a Stark, M. 
776 0 8 |i Print version:  |a R�edei, L.  |t Algebra : International Series of Monographs in Pure and Applied Mathematics, Vol. 91-1.  |d Burlington : Elsevier Science, �2014  |z 9781483197616 
830 0 |a International series in pure and applied mathematics. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781483197616  |z Texto completo