|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
SCIDIR_ocn898772077 |
003 |
OCoLC |
005 |
20231120111907.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141227s1967 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d N$T
|d OCLCQ
|d N$T
|d OPELS
|d E7B
|d OCLCF
|d DEBSZ
|d S4S
|d YDXCP
|d COO
|d OCL
|d OCLCQ
|d MERUC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 896406346
|a 922373590
|
020 |
|
|
|a 9781483222646
|q (electronic bk.)
|
020 |
|
|
|a 1483222640
|q (electronic bk.)
|
020 |
|
|
|a 1483197611
|
020 |
|
|
|a 9781483197616
|
020 |
|
|
|z 9781483197616
|
035 |
|
|
|a (OCoLC)898772077
|z (OCoLC)896406346
|z (OCoLC)922373590
|
050 |
|
4 |
|a QA155
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512
|2 23
|
100 |
1 |
|
|a R�edei, L.
|
245 |
1 |
0 |
|a Algebra.
|n Volume 1.
|
260 |
|
|
|a Oxford :
|b Pergamon Press,
|c 1967.
|
300 |
|
|
|a 1 online resource (843 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a International Series in Pure and Applied Mathematics ;
|v v. 91-1
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover; Algebra; Copyright Page; Table of Contents; PREFACE TO THE GERMAN EDITION; PREFACE TO THE ENGLISH EDITION; LIST OF SYMBOLS; CHAPTER I. SET-THEORETICAL PRELIMINARIES; 1. Sets; 2. Relations; 3. Mappings; 4. Multiplication of Mappings; 5. Functions; 6. Classification of a Set. Equivalence Relations; 7. Natural Numbers; 8. Equipotent Sets; 9. Ordered and Semiordered Sets; 10. Well-ordered Sets; 11*. The Lemma of Kuratowski-Zorn; 12. The Special Lemma of Kuratowski-Zorn; 13. The Lemma of Teichmiiller-Tukey; 14. The Theorem of Hausdorff-Birkhoff.
|
505 |
8 |
|
|a 15. Theorem of Well-ordering 16. Transfinite Induction; CHAPTER II. STRUCTURES; 17. Compositions; 18. Operators; 19. Structures; 20. Semigroups; 21. Groups; 22. Modules; 23. Rings; 24. Skew Fields; 25. Substructures; 26. Generating Elements; 27. Some Important Substructures; 28. Isomorphisms; 29. Homomorphisms; 30. Factor Structures; 31. The Homomorphy Theorem; 32. Automorphisms. Endomorphisms. Autohomomorphisms. Meromorphisms; 33. Isomorphic Structures with the Same Elements; 34. Skew Products; 35. Structure Extensions.
|
505 |
8 |
|
|a 36. Representation of Groups by Permutation Groups 37. Endomorphism Rings; 38. Representation of Rings by Endomorphism Rings; 39. Anti-isomorphisms. Anti-automorphisms; 40. Complexes; 41. Cosets. Residue Classes; 42. Normal Divisors. Ideals; 43. Alternating Groups; 44. Direct Products. Direct Sums; 45. Basis; 46. Congruences; 47. Quotient Structures; 48. Difference Structures; 49. Free Structures. Structures Defined by Equations; 50. Schreier Group Extensions; 51. The Holomorph of a Group; 52. Everett Ring Extensions; 53. Double Homothetisms.
|
505 |
8 |
|
|a 54. The Holomorphs of a Ring 55. The Two Isomorphy Theorems; 56. Simple Factor Structures; 57. Commutative Factor Structures; 58, Zassenhaus's Lemma; 59. Schreier's Main Theorem and the Jordan-H�older Theorem; 60. Lattices; CHAPTER III. OPERATOR STRUCTURES; 61. Operator Structures; 62. Operator Groups, Operator Modules and Operator Rings; 63. Remak-Krull-Schmidt Theorem; 64. Vector Spaces. Double Vector Spaces. Algebras. Double Algebras; 65. Cross Products; 66. Monomial Rings; 67. Polynomial Rings; 68. Linear Mappings; 69. Full Matrix Rings; 70. Linear Groups.
|
505 |
8 |
|
|a 71. Alternating Rings 72. Determinants; 73. Cramer's Rule; 74. Characteristic Polynomials; 75. Norms and Traces; 77. The Quaternion Group; 78. Quaternion Rings; CHAPTER IV. DIVISIBILITY IN RINGS; 79. Factor Decompositions and Divisibility; 80. Ideals and Divisibility; 81. Principal Ideal Rings; 82. Euclidean Rings; 83. Euclid's Algorithm; 84. The Ring of the Integers; 85. Szendrei's Theorem; 86. Polynomial Rings over Skew Fields; 87. The Residue Theorem for Polynomials; 88. Gauss's Theorem; 89.* The Ring of Integral Quaternions.
|
500 |
|
|
|a Chapter v. finite abelian groups.
|
500 |
|
|
|a Algebra.
|
650 |
|
0 |
|a Algebra.
|
650 |
|
6 |
|a Alg�ebre.
|0 (CaQQLa)201-0001155
|
650 |
|
7 |
|a algebra.
|2 aat
|0 (CStmoGRI)aat300054523
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Algebra
|2 fast
|0 (OCoLC)fst00804885
|
700 |
1 |
|
|a Sneddon, I. N.
|
700 |
1 |
|
|a Stark, M.
|
776 |
0 |
8 |
|i Print version:
|a R�edei, L.
|t Algebra : International Series of Monographs in Pure and Applied Mathematics, Vol. 91-1.
|d Burlington : Elsevier Science, �2014
|z 9781483197616
|
830 |
|
0 |
|a International series in pure and applied mathematics.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781483197616
|z Texto completo
|