Cargando…

Applied methods of the theory of random functions /

Applied Methods of the Theory of Random Functions.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sveshnikov, A. A. (Aram Arut�i�unovich) (Autor)
Otros Autores: Berry, J., Haller, L.
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: Oxford : Pergamon Press, 1966.
Edición:[1st English ed.].
Colección:International series of monographs in pure and applied mathematics ; v. 89.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn898772076
003 OCoLC
005 20231117032928.0
006 m o d
007 cr cnu---unuuu
008 141227s1966 enk ob 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d N$T  |d HEBIS  |d OCLCQ  |d N$T  |d OCLCE  |d OCLCF  |d OPELS  |d E7B  |d DEBSZ  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 301032031  |a 561721569  |a 922373702  |a 987647095 
020 |a 9781483222639  |q (electronic bk.) 
020 |a 1483222632  |q (electronic bk.) 
020 |a 9781483197609 
020 |a 1483197603 
035 |a (OCoLC)898772076  |z (OCoLC)301032031  |z (OCoLC)561721569  |z (OCoLC)922373702  |z (OCoLC)987647095 
041 1 |a eng  |h rus 
042 |a dlr 
050 4 |a QA401 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.1 
100 1 |a Sveshnikov, A. A.  |q (Aram Arut�i�unovich),  |e author. 
245 1 0 |a Applied methods of the theory of random functions /  |c A.A. Sveshnikov ; translated by J. Berry, translation edited by L. Haller. 
250 |a [1st English ed.]. 
260 |a Oxford :  |b Pergamon Press,  |c 1966. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International series of monographs in pure and applied mathematics ;  |v v. 89 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 311-312). 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |a Front Cover; Applied Methods of the Theory of Random Functions; Copyright Page; Table of Contents; PUBLISHER'S NOTE; CHAPTER I. THE GENERAL PROPERTIES OF RANDOM FUNCTIONS; 1. THE THEORY OF RANDOM FUNCTIONS AS A BRANCH OF THE THEORY OF PROBABILITY; 2. THE BASIC NOTATIONS AND FORMULAE OF THE THEORY OF PROBABILITY; 3. RANDOM FUNCTIONS AND METHODS OF DESCRIBING THEM; 4. TYPICAL PROBLEMS, SOLVED BY MEANS OF THE THEORY OF RANDOM FUNCTIONS; 5. PROPERTIES OF THE CORRELATION FUNCTION; 6. THE DIFFERENTIATION AND INTEGRATION OF RANDOM FUNCTIONS 
505 8 |a 7. THE ACTION OF A LINEAR OPERATOR ON A RANDOM FUNCTION 8. A SYSTEM OF RANDOM FUNCTIONS. THE CROSS-CORRELATION FUNCTION; 9. PROBLEMS ON OVERSHOOTS: THE MEAN NUMBER OF OVERSHOOTS OF A RANDOM FUNCTION ABOVE A GIVEN LEVEL, THE MEAN DURATION OF AN OVERSHOOT; CHAPTER II. THE SPECTRAL THEORY OF STATIONARY RANDOM FUNCTIONS; 10. THE SPECTRAL REPRESENTATION OF STATIONARY RANDOM FUNCTIONS; 11. EXAMPLES OF THE CALCULATION OF THE SPECTRAL DENSITY OF A STATIONARY RANDOM PROCESS 
505 8 |a 12. THE SPECTRAL DENSITY OF A LINEAR COMBINATION OF A STATIONARY RANDOM FUNCTION AND ITS DERIVATIVES. THE STATIONARY SOLUTION OF A LINEAR DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS 13. EXAMPLES OF SPECTRAL DENSITIES AND CORRELATION FUNCTIONS IN MORE COMPLICATED CASES; 14. DETERMINATION OF THE CORRELATION FUNCTION OF THE SOLUTION OF A NON-HOMOGENEOUS DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS WHEN THE RIGHT-HAND SIDE IS NON-STATIONARY; 15. LINEAR DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS 
505 8 |a 16. THE PROBABILITY CHARACTERISTICS OF THE SOLUTIONS OF A SYSTEM OF LINEAR EQUATIONS 17. THE DENSITY DISTRIBUTION OF THE SOLUTION OF A LINEAR DIFFERENTIAL EQUATION; CHAPTER III. DETERMINATION OF OPTIMAL DYNAMICAL SYSTEMS; 18. STATEMENT OF THE PROBLEM OF THE DETERMINATION OF OPTIMAL SYSTEMS; 19. THE GENERAL SOLUTION OF THE PROBLEM OF DETERMINING (GIVEN THE INFINITE PAST OF THE PROCESS) THE OPTIMAL DYNAMICAL SYSTEM REPRESENTING THE OPERATIONS OF SMOOTHING (FILTERING), EXTRAPOLATION AND DIFFERENTIATION 
505 8 |a 20. FORMULAE FOR THE DETERMINATION OF THE OPTIMAL TRANSFER FUNCTION OF A DYNAMICAL SYSTEM PERFORMING FILTRATION, EXTRAPOLATION AND DIFFERENTIATION IN THE CASE OF RATIONAL SPECTRAL DENSITIES OF SIGNAL AND NOISE 21. PRACTICAL FORMULAE FOR THE OPTIMAL TRANSFER FUNCTION OF A DYNAMICAL SYSTEM WITH DELAY; 22. OPTIMAL SMOOTHING, EXTRAPOLATION AND DIFFERENTIATION FOR A FINITE OBSERVATION TIME; 23. EXAMPLES OF THE DETERMINATION OF OPTIMAL DYNAMICAL SYSTEMS FOR A FINITE OBSERVATION TIME; CHAPTER IV. EXPERIMENTAL METHODS FOR THE DETERMINATION OF CHARACTERISTICS OF RANDOM FUNCTIONS 
520 |a Applied Methods of the Theory of Random Functions. 
650 0 |a Stochastic processes. 
650 2 |a Stochastic Processes  |0 (DNLM)D013269 
650 6 |a Processus stochastiques.  |0 (CaQQLa)201-0002663 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Stochastic processes.  |2 fast  |0 (OCoLC)fst01133519 
700 1 |a Berry, J. 
700 1 |a Haller, L. 
776 0 8 |i Print version:  |a Sveshnikov, A.A.  |t Applied Methods of the Theory of Random Functions : International Series of Monographs in Pure and Applied Mathematics, Vol. 89.  |d Burlington : Elsevier Science, �2014  |z 9781483197609 
830 0 |a International series of monographs in pure and applied mathematics ;  |v v. 89. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781483197609  |z Texto completo