The theory of finitely generated commutative semigroups /
The Theory of Finitely Generated Commutative Semigroups describes a theory of finitely generated commutative semigroups which is founded essentially on a single """"fundamental theorem"""" and exhibits resemblance in many respects to the algebraic theory of nu...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Alemán |
Publicado: |
Oxford :
Pergamon Press,
1965.
|
Edición: | First edition. |
Colección: | International series of monographs in pure and applied mathematics ;
v. 82. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000Ia 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn898771851 | ||
003 | OCoLC | ||
005 | 20231120111907.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 141227s1965 enk o 000 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCO |d N$T |d HEBIS |d OCLCQ |d N$T |d E7B |d OCLCF |d DEBSZ |d OPELS |d COO |d YDXCP |d OCLCQ |d MERUC |d OCLCQ |d AU@ |d OCLCQ |d VLY |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 896409350 | ||
020 | |a 9781483155944 |q (electronic bk.) | ||
020 | |a 1483155943 |q (electronic bk.) | ||
020 | |a 0080105203 | ||
020 | |a 9780080105208 | ||
035 | |a (OCoLC)898771851 |z (OCoLC)896409350 | ||
041 | 1 | |a eng |h ger | |
050 | 4 | |a QA171 |b .R383 1965 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 0 | 4 | |a 512.86 |2 23 |
100 | 1 | |a R�edei, L. |q (L�aszl�o), |d 1900- | |
240 | 1 | 0 | |a Theorie der endlich erzeugbaren kommutativen Halbgruppen. |l English |
245 | 1 | 4 | |a The theory of finitely generated commutative semigroups / |c L�aszl�o R�edei ; translation edited by N. Reilly. |
250 | |a First edition. | ||
260 | |a Oxford : |b Pergamon Press, |c 1965. | ||
300 | |a 1 online resource (368 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a International series of monographs in pure and applied mathematics ; |v v. 82 | |
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed February 2, 2015). | |
505 | 0 | |a Front Cover; The Theory of Finitely Generated Commutative Semigroups; Copyright page; Table of Contents; Preface; Introduction; Chapter I. Kernel functions and fundamental theorem; 1. Preliminaries; 2. Axioms I-V of the kernel functions; 3. Fundamental theorem; 4. Second form of Axiom V; 5. Proof of the fundamental theorem; Chapter II. Elementary properties of the kernel functions; 6. Set stars and ideal stars; 7. Third form of Axiom V; 8. Fourth form of Axiom V; 9. The star property of the kernel functions; 10. i'irst theorem of reciprocity; 11. Transitivity classes; 12. Reduction of Axiom V | |
505 | 8 | |a Chapter III. Ideal theory of free semimodules of finite rank13. Dickson's theorem; 14. The ideals of and F�; 15. Translation classes of ideals; 16. Ideal lattice and principal ideal lattice; 17. Direct decompositions in F and F�; 18. The height of ideals of F; 19. The maximal condition in the ideal lattice of 7^; 20. Semiondomorphisms of the ideal lattices of F�; 21. Certain congruences in commutative cancellative semigroups; 22. jP""-congruences by ideals; 23. Second theorem of reciprocity; 24. The classes for an ideal of F; 25. The set of classes by an ideal of F | |
505 | 8 | |a Chapter IV. Further properties of the kernel functions26. The kernel of -congruences or kernel functions; 27. Translated kernel functions; 28. Finiteness of the range of values of the kernel functions; 29. Classification of the kernel functions; 30. The kernel functions of first degree; 31. The enveloping kernel function of first degree; 32. The kernel functions of first order; 33. Finite definability of finitely generated commutativesemigroups; 34. The lattice of kernel functions; 35. Connection of an F-congruence with the values of thekernel function belonging to it | |
505 | 8 | |a 36. The submodules of F�37. Finite commutative semigroups; 38. Numerical semimodules; 39. Investigation of the kernel functions **in the little; 40. The numerical semimodules attached to the kernelfunctions; 41. The kernel functions of first rank; 42. The maximum condition in the lattice of kernel functions; 43. The normals of a kernel function; 44. Splitting kernel functions; 45. The kernel functions of second order; 46. The kernel functions of second dimension; 47. Degenerate kernel functions; Chapter V. Equivalent kernel functions | |
505 | 8 | |a 48. Preparations for the solution of the isomorphism problem49. Submodules of equivalent relative to F; 50. Equivalent kernel functions; Appendix; 51. The case of semigroups without a unity element; Index; Other titles in the series | |
520 | |a The Theory of Finitely Generated Commutative Semigroups describes a theory of finitely generated commutative semigroups which is founded essentially on a single """"fundamental theorem"""" and exhibits resemblance in many respects to the algebraic theory of numbers. The theory primarily involves the investigation of the F-congruences (F is the the free semimodule of the rank n, where n is a given natural number). As applications, several important special cases are given. This volume is comprised of five chapters and begins with preliminaries on finitely generated commutative semigroups before. | ||
650 | 0 | |a Commutative semigroups. | |
650 | 6 | |a Semi-groupes commutatifs. |0 (CaQQLa)201-0361591 | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Commutative semigroups |2 fast |0 (OCoLC)fst00871207 | |
700 | 1 | |a Reilly, N., |e editor. | |
776 | 0 | 8 | |i Print version: |a R�edei, L. (L�aszl�o), 1900- |s Theorie der endlich erzeugbaren kommutativen Halbgruppen. English. |t Theory of finitely generated commutative semigroups. |b [1st ed.]. |d Oxford, New York, Pergamon Press [1965] |w (DLC) 63022764 |w (OCoLC)1303005 |
830 | 0 | |a International series of monographs in pure and applied mathematics ; |v v. 82. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780080105208 |z Texto completo |