|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
SCIDIR_ocn898771832 |
003 |
OCoLC |
005 |
20231117032948.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141227s1962 enka ob 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d N$T
|d HEBIS
|d OCLCQ
|d N$T
|d E7B
|d OCLCF
|d DEBSZ
|d OCLCQ
|d YDXCP
|d OCLCQ
|d MERUC
|d OCLCQ
|d INARC
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 300507775
|a 567911807
|a 1149223102
|
020 |
|
|
|a 9781483184678
|q (electronic bk.)
|
020 |
|
|
|a 1483184676
|q (electronic bk.)
|
020 |
|
|
|z 9780080096933
|
020 |
|
|
|z 008009693X
|
035 |
|
|
|a (OCoLC)898771832
|z (OCoLC)300507775
|z (OCoLC)567911807
|z (OCoLC)1149223102
|
041 |
1 |
|
|a eng
|h rus
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA331
|b .V413 1962
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.9
|2 23
|
100 |
1 |
|
|a Vekua, I. N.
|q (Il��i�a Nestorovich),
|d 1907-1977.
|
240 |
1 |
0 |
|a Obobshchennye analiticheskie fun�t�sii.
|l English
|
245 |
1 |
0 |
|a Generalized analytic functions /
|c by I.N. Vekua ; English translation editor, Ian N. Sneddon.
|
260 |
|
|
|a Oxford ;
|a New York :
|b Pergamon Press,
|c 1962.
|
300 |
|
|
|a 1 online resource (xxix, 668 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a International series of monographs on pure and applied mathematics ;
|v v. 25
|
506 |
|
|
|a 3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Generalized Analytic Functions; Copyright Page; ANNOTATION; Table of Contents; FOREWORD; PART ONE: FOUNDATIONS OF THE GENERAL THEORY OF GENERALIZED ANALYTIC FUNCTIONS AND BOUNDARYVALUE PROBLEMS; CHAPTER I. SOME CLASSES OF FUNCTIONS ANDOPERATORS; 1. Classes of functions and functional spaces; 2. Classes of curves and domains. Some properties of conformalmapping; 3. Some properties of Cauchy type integrals; 4� Non-homogeneous Cauchy-Riemann system; 5. Generalized derivatives in the Sobolev sense and theirproperties; 6. Properties of the operatorTg.
|
505 |
8 |
|
|a 7. Green's formula for the class of functions D1p. Arealderivative8. On differential properties of functions of the form TGf. OperatorII; 9. Extension of the operatorII; 10. Some other properties of functions of the classes DZ(G)and D-Z(G; CHAPTEE II. REDUCTION OF A POSITIVE DIFFERENTIAL QUADRATIC FORM TO THE CANONICAL FORM. BELTRAMFS EQUATION. GEOMETRICAPPLICATIONS; 1. Introductory remarks. Homeomorphisms of a quadraticform; 2. Beltrami's system of equations; 3. Construction of the basic homeomorphism of Beltrami'sequation; 4. Proof of existence of a local homeomorphism.
|
505 |
8 |
|
|a 5. Proof of the existence of a complete homeomorphism6. Reduction of a positive quadratic differential form to the canonical form� Isometric and isometric-conjugate coordinatesystems on a surface; 7. Reduction of equations of elliptic type to the canonicalform; CHAPTER III. FOUNDATIONS OF THE GENERAL THEORY OFGENERALIZED ANALYTIC FUNCTIONS; 1. Basic concepts, terminology and notations; 2. Integral equation for functions of the class; 3. Continuity and differentiability properties of functions of theclass; 4. Basic lemma. Generalizations of some classical theorems.
|
505 |
8 |
|
|a 5. Integral representation of the second kind for generalizedanalytic functions6. Generating pair of functions of the classDerivative in the Bers sense; 7. Inversion of the non-linear integralequation; 8. Systems of fundamental generalized analytic functions andfundamental kernels of tbe class; 9. Adjoint equation. Green's identity. Equations of thesecond order; 10. Generalized Cauchy formula; 11. Continuous continuations of generalized analytic functions. Generalized principle of symmetry; 12. Compactness; 13. Representation of resolvents by means of kernels.
|
505 |
8 |
|
|a 14. Representation of generalized analytic functions by meansof generalized integrals of the Cauchy type15. Complete systems of generalized analytic functions. Generalized power series; 16. Integral equations for the real part of a generalizedanalytic function; 17. Properties of solutions of elliptic systems of equationsof the general form; CHAPTER IV. BOUNDARY VALUE PROBLEMS; 1. Formulation of the generalized Riemann-Hilbert problem. Continuity properties of the solution of the problem; 2. The adjoint boundary value Problem �A'. Necessary and sufficient conditionsof solubility of Problem A. 3. Index of Problem A. Reduction of the boundary conditionof Problem A to the canonical form.
|
504 |
|
|
|a Includes bibliographical references (pages 647-657).
|
650 |
|
0 |
|a Analytic functions.
|
650 |
|
6 |
|a Fonctions analytiques.
|0 (CaQQLa)201-0027519
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Analytic functions.
|2 fast
|0 (OCoLC)fst00808336
|
700 |
1 |
|
|a Sneddon, Ian Naismith.
|
700 |
1 |
|
|a Ulam, S.
|
700 |
1 |
|
|a Stark, M.
|
776 |
0 |
8 |
|i Print version:
|a Vekua, I.N. (Il��i�a Nestorovich), 1907-1977.
|s Obobshchennye analiticheskie fun�t�sii. English.
|t Generalized analytic functions.
|d Oxford, New York, Pergamon Press, 1962
|w (DLC) 62009699
|w (OCoLC)1062888
|
830 |
|
0 |
|a International series of monographs in pure and applied mathematics ;
|v v. 25.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780080096933
|z Texto completo
|