Cargando…

Generalized analytic functions /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vekua, I. N. (Il��i�a Nestorovich), 1907-1977
Otros Autores: Sneddon, Ian Naismith, Ulam, S., Stark, M.
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: Oxford ; New York : Pergamon Press, 1962.
Colección:International series of monographs in pure and applied mathematics ; v. 25.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 SCIDIR_ocn898771832
003 OCoLC
005 20231117032948.0
006 m o d
007 cr cnu---unuuu
008 141227s1962 enka ob 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d N$T  |d HEBIS  |d OCLCQ  |d N$T  |d E7B  |d OCLCF  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 300507775  |a 567911807  |a 1149223102 
020 |a 9781483184678  |q (electronic bk.) 
020 |a 1483184676  |q (electronic bk.) 
020 |z 9780080096933 
020 |z 008009693X 
035 |a (OCoLC)898771832  |z (OCoLC)300507775  |z (OCoLC)567911807  |z (OCoLC)1149223102 
041 1 |a eng  |h rus 
042 |a dlr 
050 4 |a QA331  |b .V413 1962 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Vekua, I. N.  |q (Il��i�a Nestorovich),  |d 1907-1977. 
240 1 0 |a Obobshchennye analiticheskie fun�t�sii.  |l English 
245 1 0 |a Generalized analytic functions /  |c by I.N. Vekua ; English translation editor, Ian N. Sneddon. 
260 |a Oxford ;  |a New York :  |b Pergamon Press,  |c 1962. 
300 |a 1 online resource (xxix, 668 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International series of monographs on pure and applied mathematics ;  |v v. 25 
506 |a 3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Front Cover; Generalized Analytic Functions; Copyright Page; ANNOTATION; Table of Contents; FOREWORD; PART ONE: FOUNDATIONS OF THE GENERAL THEORY OF GENERALIZED ANALYTIC FUNCTIONS AND BOUNDARYVALUE PROBLEMS; CHAPTER I. SOME CLASSES OF FUNCTIONS ANDOPERATORS; 1. Classes of functions and functional spaces; 2. Classes of curves and domains. Some properties of conformalmapping; 3. Some properties of Cauchy type integrals; 4� Non-homogeneous Cauchy-Riemann system; 5. Generalized derivatives in the Sobolev sense and theirproperties; 6. Properties of the operatorTg. 
505 8 |a 7. Green's formula for the class of functions D1p. Arealderivative8. On differential properties of functions of the form TGf. OperatorII; 9. Extension of the operatorII; 10. Some other properties of functions of the classes DZ(G)and D-Z(G; CHAPTEE II. REDUCTION OF A POSITIVE DIFFERENTIAL QUADRATIC FORM TO THE CANONICAL FORM. BELTRAMFS EQUATION. GEOMETRICAPPLICATIONS; 1. Introductory remarks. Homeomorphisms of a quadraticform; 2. Beltrami's system of equations; 3. Construction of the basic homeomorphism of Beltrami'sequation; 4. Proof of existence of a local homeomorphism. 
505 8 |a 5. Proof of the existence of a complete homeomorphism6. Reduction of a positive quadratic differential form to the canonical form� Isometric and isometric-conjugate coordinatesystems on a surface; 7. Reduction of equations of elliptic type to the canonicalform; CHAPTER III. FOUNDATIONS OF THE GENERAL THEORY OFGENERALIZED ANALYTIC FUNCTIONS; 1. Basic concepts, terminology and notations; 2. Integral equation for functions of the class; 3. Continuity and differentiability properties of functions of theclass; 4. Basic lemma. Generalizations of some classical theorems. 
505 8 |a 5. Integral representation of the second kind for generalizedanalytic functions6. Generating pair of functions of the classDerivative in the Bers sense; 7. Inversion of the non-linear integralequation; 8. Systems of fundamental generalized analytic functions andfundamental kernels of tbe class; 9. Adjoint equation. Green's identity. Equations of thesecond order; 10. Generalized Cauchy formula; 11. Continuous continuations of generalized analytic functions. Generalized principle of symmetry; 12. Compactness; 13. Representation of resolvents by means of kernels. 
505 8 |a 14. Representation of generalized analytic functions by meansof generalized integrals of the Cauchy type15. Complete systems of generalized analytic functions. Generalized power series; 16. Integral equations for the real part of a generalizedanalytic function; 17. Properties of solutions of elliptic systems of equationsof the general form; CHAPTER IV. BOUNDARY VALUE PROBLEMS; 1. Formulation of the generalized Riemann-Hilbert problem. Continuity properties of the solution of the problem; 2. The adjoint boundary value Problem �A'. Necessary and sufficient conditionsof solubility of Problem A. 3. Index of Problem A. Reduction of the boundary conditionof Problem A to the canonical form. 
504 |a Includes bibliographical references (pages 647-657). 
650 0 |a Analytic functions. 
650 6 |a Fonctions analytiques.  |0 (CaQQLa)201-0027519 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Analytic functions.  |2 fast  |0 (OCoLC)fst00808336 
700 1 |a Sneddon, Ian Naismith. 
700 1 |a Ulam, S. 
700 1 |a Stark, M. 
776 0 8 |i Print version:  |a Vekua, I.N. (Il��i�a Nestorovich), 1907-1977.  |s Obobshchennye analiticheskie fun�t�sii. English.  |t Generalized analytic functions.  |d Oxford, New York, Pergamon Press, 1962  |w (DLC) 62009699  |w (OCoLC)1062888 
830 0 |a International series of monographs in pure and applied mathematics ;  |v v. 25. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080096933  |z Texto completo