Cargando…

Geometric transformations. Volume 1, Euclidean and affine transformations.

Euclidean and Affine Transformations.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Modenov, P. S. (Petr Sergeevich) (Autor)
Otros Autores: Parkhomenko, A. S., Booker, Henry, Bromley, D. Allan, DeClaris, Nicholas
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: New York : Academic Press, 1965.
Colección:Academic paperbacks.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Euclidean and Affine Transformations; Copyright Page; Preface to Volume 1 of the English Edition; Translator's Note; Preface to the Russian Edition; Table of Contents; Introduction; CHAPTER I. General Definitions; 1. Sets and Functions; 2. Mappings; 3. Groups of Transformations; CHAPTER II. Orthogonal Transformations; 4. Orthogonal Mappings; 5. Properties of Orthogonal Mappings; 6. Orientation; 7. Orthogonal Transformations of the First and SecondKinds; 8. The Fundamental Types of Orthogonal Transformation (Translation, Reflection, Rotation).
  • 9. Representations of Orthogonal Transformations as Products of the Fundamental Orthogonal Transformations: Translations, Reflections, and Rotations10. Orthogonal Transformations of the Plane inCoordinates; 11. Orthogonal Transformations in Space; 12. Representation of an Orthogonal Transformation of Space as a Product of FundamentalOrthogonal Transformations; 13. Orthogonal Transformations ofSpace in Coordinates; CHAPTER III. Similarity Transformations; 14. Similarity Mappings; 15. Properties of Similarity Transformations; 16. Homothetic Transformations.
  • 17. Representation of a Similarity Transformation as the Product of a Homothetic Transformation and an Orthogonal Transformation18. Similarity Transformations of the Plane in Coordinates; 19. Similarity Transformations in Space; CHAPTER IV. Affine Transformations; 20. Definition of Affine Mappings and Transformations of the Plane; 21. Examples of Affine Transformations andMappings of a Plane; 22. Properties of Affine Mappings; 23. Darboux's Lemma and its Consequences; 25. Further Properties of Affine Mappings.
  • 26. Representation of any Affine Transformation as a Product of Affine Transformations of the Simplest Types27. Noninvariance of Lengths of Segments under Affine Mappings; 28. The Change in Area under an Affine Mapping of One Plane on to Another; 29. An Application of Affine Transformations to the Investigation of Properties of the Ellipse; 30. Affine Transformations in Coordinates; 31. Affine Classification of Quadratic Curves; 32. Affine Transformations of Space; APPENDIX TO CHAPTER II:Length-Preserving Mappings; Subject Index.