Cargando…

Mathematical methods and theory in games, programming and economics. Volume II, The theory of infinite games /

Mathematical Methods and Theory in Games, Programming, and Economics.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karlin, Samuel, 1923-2007 (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Pergamon Press : Addison-Wesley, 1959.
Colección:Addison-Wesley series in statistics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn897381950
003 OCoLC
005 20231120111919.0
006 m o d
007 cr cnu---unuuu
008 141203s1959 enka ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d EBLCP  |d N$T  |d HEBIS  |d E7B  |d DEBSZ  |d S4S  |d MERUC  |d OCLCA  |d OCLCQ  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 898772090  |a 903958907  |a 1162272850 
020 |a 9781483224008 
020 |a 1483224007 
020 |z 9781483198972 
020 |z 1483198979 
035 |a (OCoLC)897381950  |z (OCoLC)898772090  |z (OCoLC)903958907  |z (OCoLC)1162272850 
050 4 |a QA269 
082 0 4 |a 519.3  |2 22 
100 1 |a Karlin, Samuel,  |d 1923-2007,  |e author. 
245 1 0 |a Mathematical methods and theory in games, programming and economics.  |n Volume II,  |p The theory of infinite games /  |c by Samuel Karlin. 
246 3 0 |a Theory of infinite games 
264 1 |a London :  |b Pergamon Press :  |b Addison-Wesley,  |c 1959. 
300 |a 1 online resource (xi, 386 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Addison-Wesley series in statistics 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Mathematical Methods and Theory in Games, Programming, and Economics; Copyright Page; Table of Contents; CHAPTER 1. THE DEFINITION OF A GAME AND THE MIN-MAX THEOREM; 1.1 Introduction. Games in normal form; 1.2 Examples; 1.3 Choice of strategies; 1.4 The min-max theorem for finite matrix games; 1.5 General min-max theorem; 1.6 Problems; Notes and references; CHAPTER 2. THE NATURE AND STRUCTURE OF INFINITE GAMES; 2.1 Introduction; 2.2 Games on the unit square; 2.3 Classes of games on the unit square; 2.4 Infinite games whose strategy spaces are known function spaces 
505 8 |a 2.5 How to solve infinite games2.6 Problems; Notes and references; CHAPTER 3. SEPARABLE AND POLYNOMIAL GAMES; 3.1 General finite convex games; 3.2 The fixed-point method for finite convex games; 3.3 Dimension relations for solutions of finite convex games; 3.4 The method of dual cones; 3.5 Structure of solution sets of separable games; 3.6 General remarks on convex sets in En; 3.7 The reduced moment spaces; 3.8 Polynomial games; 3.9 Problems; Notes and references; CHAPTER 4. GAMES WITH CONVEX KERNELS AND GENERALIZED CONVEX KERNELS; 4.1 Introduction; 4.2 Convex continuous games 
505 8 |a 4.3 Generalized convex games4.4 Games with convex pay-off in En; 4.5 A theorem on convex functions; 4.6 Problems; Notes and references; CHAPTER 5. GAMES OF TIMING OF ONE ACTION FOR EACH PLAYER; 5.1 Examples of games of timing; 5.2 The integral equations of games of timing and their solutions; 5.3 Integral equations with positive kernels; 5.4 Existence proofs; 5.5 The silent duel with general accuracy functions; 5.6 Problems; Notes and references; CHAPTER 6. GAMES OF TIMING (CONTINUED); 6.1 Games of timing of class I; 6.2 Examples; 6.3 Proof of Theorem 6.1.1 
505 8 |a 6.4 Games of timing involving several actions6.5 Butterfly-shaped kernels; 6.6 Problems; Notes and references; CHAPTER 7. MISCELLANEOUS GAMES; 7.1 Games with analytic kernels; 7.2 Bell-shaped kernels T; 7.3 Bell-shaped games; 7.4 Other types of continuous games; 7.5 Invariant games; 7.6 Problems; Notes and references; CHAPTER 8. INFINITE CLASSICAL GAMES NOT PLAYED OVER THE UNIT SQUARE ; 8.1 Preliminary results (the Neyman-Pearson lemma); 8.2 Application of the Neyman-Pearson lemma to a variational problem; 8.3 The fighter-bomber duel; 8.4 Solution of the fighter-bomber duel 
505 8 |a 8.5 The two-machine-gun duel8.6 Problems; Notes and references; CHAPTER 9. POKE R AND GENERAL PARLOR GAMES; 9.1 A simplified blackjack game; 9.2 A poker model with one round of betting and one size of bet; 9.3 A poker model with several sizes of bet; 9.4 Poker model with two rounds of betting; 9.5 Poker model with kraises; 9.6 Poker with simultaneous moves; 9.7 The Le Her Game; 9.8 High hand wins -- 9.9 Problems; Notes and references; SOLUTIONS TO PROBLEMS; APPENDIX A. VECTOR SPACES AND MATRICES; A.1 Euclidean and unitary spaces 
520 |a Mathematical Methods and Theory in Games, Programming, and Economics. 
546 |a English. 
650 0 |a Games of strategy (Mathematics) 
650 0 |a Game theory. 
650 0 |a Programming (Mathematics) 
650 0 |a Economics, Mathematical. 
650 6 |a Jeux de strat�egie (Math�ematiques)  |0 (CaQQLa)201-0033727 
650 6 |a Th�eorie des jeux.  |0 (CaQQLa)201-0007580 
650 6 |a Programmation (Math�ematiques)  |0 (CaQQLa)201-0001238 
650 7 |a Economics, Mathematical  |2 fast  |0 (OCoLC)fst00902260 
650 7 |a Game theory  |2 fast  |0 (OCoLC)fst00937501 
650 7 |a Games of strategy (Mathematics)  |2 fast  |0 (OCoLC)fst00937581 
650 7 |a Programming (Mathematics)  |2 fast  |0 (OCoLC)fst01078701 
776 0 8 |i Print version:  |a Karlin, Samuel, 1923-2007.  |t Mathematical methods and theory in games, programming and economics  |z 9781483224008  |w (OCoLC)277916003 
830 0 |a Addison-Wesley series in statistics. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781483198972  |z Texto completo