Introduction to higher algebra /
Introduction to Higher Algebra.
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Polaco |
Publicado: |
Oxford :
Pergamon Press,
1964.
|
Colección: | International series of monographs in pure and applied mathematics ;
volume 37. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn897134062 | ||
003 | OCoLC | ||
005 | 20231120111917.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 141201s1964 enk o 000 0 eng d | ||
040 | |a OPELS |b eng |e rda |e pn |c OPELS |d N$T |d DEBSZ |d COO |d YDXCP |d MERUC |d OCLCQ |d OCLCO |d OCLCA |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 948807514 | ||
020 | |a 9781483280356 |q (electronic bk.) | ||
020 | |a 1483280357 |q (electronic bk.) | ||
020 | |z 9780080101521 | ||
020 | |z 0080101526 | ||
035 | |a (OCoLC)897134062 |z (OCoLC)948807514 | ||
041 | 1 | |a eng |h pol | |
050 | 4 | |a QA155 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 0 | 4 | |a 512 |2 22 |
100 | 1 | |a Mostowski, Andrzej, |e author. | |
245 | 1 | 0 | |a Introduction to higher algebra / |c by A. Mostowski and M. Stark ; translated from the Polish by J. Musielak. |
264 | 1 | |a Oxford : |b Pergamon Press, |c 1964. | |
300 | |a 1 online resource (474 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a International series of monographs on pure and applied mathematics ; |v volume 37 | |
500 | |a Translation of elementy algegry wyzszej. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Introduction to Higher Algebra; Copyright Page; Table of Contents; CHAPTERI. INTRODUCTION; 1. Functions; 2. Mathematical induction; 3. Sums and products of an arbitrary number of terms; CHAPTERII. SOME COMBINATORIAL PROBLEMS; 1. Permutations; 2.k-permutations; 3. Combinations; 4. Newton's multinomial formula; 5. Multiplication of permutations; CHAPTERIII. COMPLEX NUMBERS; 1. Fields; 2. Introductory remarks on complex numbers; 3. Definition of complex numbers; 4. Properties of complex numbers; 5. Roots of complex numbers; CHAPTERIV. DETERMINANTS | |
505 | 8 | |a 1. Definition of a determinant2. Laplace expansion; 3. Properties of determinants; 4. Examples; 5. Cramer's formulae; 6. General Laplace theorem; 7. Cauchy's theorem and its generalizations; CHAPTERV. VECTOR SPACES AND LINEAR EQUATIONS; 1. Vector spaces; 2. Rank of a matrix; 3. Linear equations; 4. Axiomatic definition ofdeterminant; CHAPTERVI. POLYNOMIALS IN ONE VARIABLE; 1. Operations on polynomials; 2. The arithmetic of the ringK; 3. Roots of a polynomial; 4. Interpolation formulae; 5. Rational functions; CHAPTERVII. RINGS OF REAL AND COMPLEX POLYNOMIALS | |
505 | 8 | |a 1. The fundamental theorem of algebra2. Polynomials of the ring B[x]; 3. Quadratic equations in the domain of complex numbers; 4. Cubic equations; 5. Equations of the fourth degree; 6. Reciprocal equations; CHAPTERVIII. RING OF RATIONAL POLYNOMIALS ALGEBRAIC AND TRANSCENDENTAL NUMBERS; 1. Reduction of polynomials with rational coefficients to polynomialswith integral coefficients; 2. Polynomials irreducible in the field W; 3. Algebraic numbers; 4. Transcendental numbers; CHAPTERIX. POLYNOMIALS IN SEVERAL VARIABLES AND SYMMETRIC FUNCTIONS; 1. The arithmetic of the ringk | |
505 | 8 | |a 2. Symmetric polynomialsCHAPTERX. THE THEORY OF ELIMINATION; 1. The resultant; 2. Systems of two equations in two unknowns; 3. Points of intersection of algebraic curves; CHAPTERXI. QUADRATIC AND HERMITIAN FORMS; 1. Introduction; 2. Linear transformations; 3. Quadratic forms; 4. Orthogonal transformations of quadratic forms; 5. Hermitian forms and unitary transformations; APPENDIX:SOME PROPERTIES OF MATRICES AND QUADRATIC FORMS; 1. Cofactor-matrix; 2. The case of a singular matrix; 3. The rank of the matrix formed by minors; 4. The rank of a symmetric matrix | |
505 | 8 | |a 5. Sylvester's identity. Kronecker's and Jacobi's theoremson quadratic forms6. Gram matrices; 7. Cayley's and Hamilton's theorem; Index | |
520 | |a Introduction to Higher Algebra. | ||
650 | 0 | |a Algebra. | |
650 | 6 | |a Alg�ebre. |0 (CaQQLa)201-0001155 | |
650 | 7 | |a algebra. |2 aat |0 (CStmoGRI)aat300054523 | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Algebra |2 fast |0 (OCoLC)fst00804885 | |
650 | 7 | |a Algebra |2 gnd |0 (DE-588)4001156-2 | |
655 | 7 | |a Einf�uhrung. |2 swd | |
700 | 1 | |a Stark, Marceli, |d 1908-1974, |e author. | |
700 | 1 | |a Musielak, J., |e translator. | |
776 | 0 | 8 | |i Print version: |a Mostowski, Andrzej. |t Introduction to higher algebra |z 9781483280356 |w (DLC) 64054613 |w (OCoLC)1415692 |
830 | 0 | |a International series of monographs in pure and applied mathematics ; |v volume 37. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780080101521 |z Texto completo |