Cargando…

Introduction to higher algebra /

Introduction to Higher Algebra.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mostowski, Andrzej (Autor), Stark, Marceli, 1908-1974 (Autor)
Otros Autores: Musielak, J. (Traductor)
Formato: Electrónico eBook
Idioma:Inglés
Polaco
Publicado: Oxford : Pergamon Press, 1964.
Colección:International series of monographs in pure and applied mathematics ; volume 37.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn897134062
003 OCoLC
005 20231120111917.0
006 m o d
007 cr cnu---unuuu
008 141201s1964 enk o 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d DEBSZ  |d COO  |d YDXCP  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCA  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 948807514 
020 |a 9781483280356  |q (electronic bk.) 
020 |a 1483280357  |q (electronic bk.) 
020 |z 9780080101521 
020 |z 0080101526 
035 |a (OCoLC)897134062  |z (OCoLC)948807514 
041 1 |a eng  |h pol 
050 4 |a QA155 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512  |2 22 
100 1 |a Mostowski, Andrzej,  |e author. 
245 1 0 |a Introduction to higher algebra /  |c by A. Mostowski and M. Stark ; translated from the Polish by J. Musielak. 
264 1 |a Oxford :  |b Pergamon Press,  |c 1964. 
300 |a 1 online resource (474 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International series of monographs on pure and applied mathematics ;  |v volume 37 
500 |a Translation of elementy algegry wyzszej. 
588 0 |a Print version record. 
505 0 |a Front Cover; Introduction to Higher Algebra; Copyright Page; Table of Contents; CHAPTERI. INTRODUCTION; 1. Functions; 2. Mathematical induction; 3. Sums and products of an arbitrary number of terms; CHAPTERII. SOME COMBINATORIAL PROBLEMS; 1. Permutations; 2.k-permutations; 3. Combinations; 4. Newton's multinomial formula; 5. Multiplication of permutations; CHAPTERIII. COMPLEX NUMBERS; 1. Fields; 2. Introductory remarks on complex numbers; 3. Definition of complex numbers; 4. Properties of complex numbers; 5. Roots of complex numbers; CHAPTERIV. DETERMINANTS 
505 8 |a 1. Definition of a determinant2. Laplace expansion; 3. Properties of determinants; 4. Examples; 5. Cramer's formulae; 6. General Laplace theorem; 7. Cauchy's theorem and its generalizations; CHAPTERV. VECTOR SPACES AND LINEAR EQUATIONS; 1. Vector spaces; 2. Rank of a matrix; 3. Linear equations; 4. Axiomatic definition ofdeterminant; CHAPTERVI. POLYNOMIALS IN ONE VARIABLE; 1. Operations on polynomials; 2. The arithmetic of the ringK; 3. Roots of a polynomial; 4. Interpolation formulae; 5. Rational functions; CHAPTERVII. RINGS OF REAL AND COMPLEX POLYNOMIALS 
505 8 |a 1. The fundamental theorem of algebra2. Polynomials of the ring B[x]; 3. Quadratic equations in the domain of complex numbers; 4. Cubic equations; 5. Equations of the fourth degree; 6. Reciprocal equations; CHAPTERVIII. RING OF RATIONAL POLYNOMIALS ALGEBRAIC AND TRANSCENDENTAL NUMBERS; 1. Reduction of polynomials with rational coefficients to polynomialswith integral coefficients; 2. Polynomials irreducible in the field W; 3. Algebraic numbers; 4. Transcendental numbers; CHAPTERIX. POLYNOMIALS IN SEVERAL VARIABLES AND SYMMETRIC FUNCTIONS; 1. The arithmetic of the ringk 
505 8 |a 2. Symmetric polynomialsCHAPTERX. THE THEORY OF ELIMINATION; 1. The resultant; 2. Systems of two equations in two unknowns; 3. Points of intersection of algebraic curves; CHAPTERXI. QUADRATIC AND HERMITIAN FORMS; 1. Introduction; 2. Linear transformations; 3. Quadratic forms; 4. Orthogonal transformations of quadratic forms; 5. Hermitian forms and unitary transformations; APPENDIX:SOME PROPERTIES OF MATRICES AND QUADRATIC FORMS; 1. Cofactor-matrix; 2. The case of a singular matrix; 3. The rank of the matrix formed by minors; 4. The rank of a symmetric matrix 
505 8 |a 5. Sylvester's identity. Kronecker's and Jacobi's theoremson quadratic forms6. Gram matrices; 7. Cayley's and Hamilton's theorem; Index 
520 |a Introduction to Higher Algebra. 
650 0 |a Algebra. 
650 6 |a Alg�ebre.  |0 (CaQQLa)201-0001155 
650 7 |a algebra.  |2 aat  |0 (CStmoGRI)aat300054523 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Algebra  |2 fast  |0 (OCoLC)fst00804885 
650 7 |a Algebra  |2 gnd  |0 (DE-588)4001156-2 
655 7 |a Einf�uhrung.  |2 swd 
700 1 |a Stark, Marceli,  |d 1908-1974,  |e author. 
700 1 |a Musielak, J.,  |e translator. 
776 0 8 |i Print version:  |a Mostowski, Andrzej.  |t Introduction to higher algebra  |z 9781483280356  |w (DLC) 64054613  |w (OCoLC)1415692 
830 0 |a International series of monographs in pure and applied mathematics ;  |v volume 37. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080101521  |z Texto completo