Combustion /
Throughout its previous four editions, Combustion has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engi...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Academic Press,
[2014]
|
Edición: | Fifth edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Combustion; Copyright; Dedication; Dedication; Contents; Preface; Chapter 1
- Chemical thermodynamics and flame temperatures; 1.1 INTRODUCTION; 1.2 HEATS OF REACTION AND FORMATION; 1.3 FREE ENERGY AND THE EQUILIBRIUM CONSTANTS; 1.4 FLAME TEMPERATURE CALCULATIONS; 1.5 SUB AND SUPERSONIC COMBUSTION THERMODYNAMICS; PROBLEMS; REFERENCES; Chapter 2
- Chemical kinetics; 2.1 INTRODUCTION; 2.2 RATES OF REACTIONS AND THEIR TEMPERATURE DEPENDENCE; 2.3 SIMULTANEOUS INTERDEPENDENT REACTIONS; 2.4 CHAIN REACTIONS; 2.5 PSEUDO-FIRST-ORDER REACTIONS AND THE "FALLOFF" RANGE.
- 2.6 THE PARTIAL EQUILIBRIUM ASSUMPTION2.7 PRESSURE EFFECT IN FRACTIONAL CONVERSION; 2.8 CHEMICAL KINETICS OF LARGE REACTION MECHANISMS; PROBLEMS; REFERENCES; Chapter 3
- Explosive and general oxidative characteristics of fuels; 3.1 INTRODUCTION; 3.2 CHAIN BRANCHING REACTIONS AND CRITERIA FOR EXPLOSION; 3.3 EXPLOSION LIMITS AND OXIDATION CHARACTERISTICS OF HYDROGEN; 3.4 EXPLOSION LIMITS AND OXIDATION CHARACTERISTICS OF CARBON MONOXIDE; 3.5 EXPLOSION LIMITS AND OXIDATION CHARACTERISTICS OF HYDROCARBONS; 3.6 THE OXIDATION OF ALDEHYDES; 3.7 THE OXIDATION OF METHANE.
- 3.8 THE OXIDATION OF HIGHER-ORDER HYDROCARBONSPROBLEMS; REFERENCES; Chapter 4
- Flame phenomena in premixed combustible gases; 4.1 INTRODUCTION; 4.2 LAMINAR FLAME STRUCTURE; 4.3 LAMINAR FLAME SPEED; 4.4 STABILITY LIMITS OF LAMINAR FLAMES; 4.5 FLAME PROGAGATION THROUGH STRATIFIED COMBUSTIBLE MIXTURES; 4.6 TURBULENT REACTING FLOWS AND TURBULENT FLAMES; 4.7 STIRRED REACTOR THEORY; 4.8 FLAME STABILIZATION IN HIGH-VELOCITY STREAMS; 4.9 COMBUSTION IN SMALL VOLUMES; PROBLEMS; REFERENCES; Chapter 5
- Detonation; 5.1 INTRODUCTION; 5.2 DETONATION PHENOMENA.
- 5.3 HUGONIOT RELATIONS AND THE HYDRODYNAMIC THEORY OF DETONATIONS5.4 COMPARISON OF DETONATION VELOCITY CALCULATIONS WITH EXPERIMENTAL RESULTS; 5.5 THE ZND STRUCTURE OF DETONATION WAVES; 5.6 THE STRUCTURE OF THE CELLULAR DETONATION FRONT AND OTHER DETONATION PHENOMENA PARAMETERS; 5.7 DETONATIONS IN NONGASEOUS MEDIA; PROBLEMS; REFERENCES; Chapter 6
- Diffusion flames; 6.1 INTRODUCTION; 6.2 GASEOUS FUEL JETS; 6.3 BURNING OF CONDENSED PHASES; 6.4 BURNING OF DROPLET CLOUDS; 6.5 BURNING IN CONVECTIVE ATMOSPHERES; PROBLEMS; REFERENCES; Chapter 7
- Ignition; 7.1 CONCEPTS.
- 7.2 CHAIN SPONTANEOUS IGNITION7.3 THERMAL SPONTANEOUS IGNITION; 7.4 FORCED IGNITION; 7.5 OTHER IGNITION CONCEPTS; PROBLEMS; REFERENCES; Chapter 8
- Environmental combustion considerations; 8.1 INTRODUCTION; 8.2 THE NATURE OF PHOTOCHEMICAL SMOG; 8.3 FORMATION AND REDUCTION OF NITROGEN OXIDES; 8.4 SOX EMISSIONS; 8.5 PARTICULATE FORMATION; 8.6 STRATOSPHERIC OZONE; PROBLEMS; REFERENCES; Chapter 9
- Combustion of nonvolatile fuels; 9.1 CARBON CHAR, SOOT, AND METAL COMBUSTION; 9.2 METAL COMBUSTION THERMODYNAMICS; 9.3 DIFFUSIONAL KINETICS; 9.4 DIFFUSION-CONTROLLED BURNING RATE.