Cargando…

Transmission pipeline calculations and simulations manual /

This manual is a valuable time- and money-saving tool that will help to quickly pinpoint essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. Its three-part treatment starts with gas and petroleum data tables, followed by self-contained...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Menon, E. Shashi (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Gulf Professional, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Trans-Alaska Pipeline (North America)
  • 2. Tennessee Gas Pipeline (North America)
  • 3. Rockies Express Pipeline (North America)
  • 4. TransCanada Pipeline (North America)
  • 5. The Bolivia-Brazil Pipeline (South America)
  • 6. GasAndes Pipeline (South America)
  • 7. Balgzand Bacton Pipeline (Europe)
  • 8. Trans-Mediterranean Natural Gas Pipeline (Europe-Africa)
  • 9. Yamal-Europe Pipeline (Europe-Asia)
  • 10. South Caucasus Pipeline (Asia)
  • 11. West-East Natural Gas Pipeline Project (China-Asia)
  • 12. The Caspian Pipeline (Russia-Asia)
  • Reference
  • 1. Codes, Standards, and Regulations
  • 2. Boiler and Pressure Vessel Code
  • 3. Federal and State Laws
  • 4. ASME Council for Codes and Standards
  • 5. API Standards and Recommended Practices
  • 6. Manufacturers Standardization Society
  • 7. Pipe Fabrication Institute Standards
  • 8. American Institute of Steel Construction
  • 9. American Concrete Institute
  • 10. National Association of Corrosion Engineers.
  • 11. Fluid Control Institute Standards
  • 12. Hydraulics Institute Pump Standards
  • 1. Properties of Liquids and Gases
  • 2. Units of Measurement
  • 3. Mass, Volume, Density, and Specific Weight
  • 4. Specific Gravity and API Gravity
  • 5. Viscosity
  • 6. Vapor Pressure
  • 7. Bulk Modulus
  • 8. Fundamental Concepts of Fluid Flow
  • 9. Gas Properties
  • 10. Mass
  • 11. Volume
  • 12. Density and Specific Weight
  • 13. Specific Gravity
  • 14. Viscosity
  • 15. Ideal Gases
  • 16. Real Gases
  • 17. Natural Gas Mixtures
  • 18. Pseudo Critical Properties from Gravity
  • 19. Adjustment for Sour Gas and Nonhydrocarbon Components
  • 20.Compressibility Factor
  • 21. Heating Value
  • 22. Summary
  • 23. Problems
  • 1. Allowable Operating Pressure and Hydrostatic Test Pressure
  • 2. Barlow's Equation for Internal Pressure
  • 3. Gas Transmission Pipeline: Class Location
  • 4. Line Fill Volume and Batches
  • 5. Gas Pipelines
  • 6. Barlow's Equation
  • 7. Thick Wall Pipes.
  • 8. Derivation of Barlow's Equation
  • 9. Pipe Material and Grade
  • 10. Internal Design Pressure Equation
  • 11. Mainline Valves
  • 12. Hydrostatic Test Pressure
  • 13. Blowdown Calculations
  • 14. Determining Pipe Tonnage
  • 15. Summary
  • 1. Liquid Pressure
  • 2. Liquid: Velocity
  • 3. Liquid: Reynolds Number
  • 4. Flow Regimes
  • 5. Friction Factor
  • 6. Pressure Drop from Friction
  • 7. Colebrook-White Equation
  • 8. Hazen-Williams Equation
  • 9. Shell-MIT Equation
  • 10. Miller Equation
  • 11.T.R. Aude Equation
  • 12. Minor Losses
  • 13. Internally Coated Pipes and Drag Reduction
  • 14. Fluid Flow in Gas Pipelines
  • 15. Flow Equations
  • 16. General Flow Equation
  • 17. Effect of Pipe Elevations
  • 18. Average Pipe Segment Pressure
  • 19. Velocity of Gas in a Pipeline
  • 20. Erosional Velocity
  • 21. Reynolds Number of Flow
  • 22. Friction Factor
  • 23. Colebrook-White Equation
  • 24. Transmission Factor
  • 25. Modified Colebrook-White Equation
  • 26. AGA Equation.
  • 27. Weymouth Equation
  • 28. Panhandle A Equation
  • 29. Panhandle B Equation
  • 30. Institute of Gas Technology Equation
  • 31. Spitzglass Equation
  • 32. Mueller Equation
  • 33. Fritzsche Equation
  • 34. Effect of Pipe Roughness
  • 35.Comparison of Flow Equations
  • 36. Summary
  • 1. Total Pressure Drop Required to Pump a Given Volume of Fluid through a Pipeline
  • 2. Frictional Component
  • 3. Effect of Pipeline Elevation
  • 4. Effect of Changing Pipe Delivery Pressure
  • 5. Pipeline with Intermediate Injections and Deliveries
  • 6. System Head Curves: Liquid Pipelines
  • 7. Hydraulic Pressure Gradient: Liquid Pipeline
  • 8. Transporting High Vapor Pressure Liquids
  • 9. Hydraulic Pressure Gradient: Gas Pipeline
  • 10. Pressure Regulators and Relief Valves
  • 11. Summary
  • 1. Temperature-Dependent Flow
  • 2. Formulas for Thermal Hydraulics: Liquid Pipelines
  • 3. Isothermal versus Thermal Hydraulics: Gas Pipelines
  • 4. Temperature Variation and Gas Pipeline Modeling.
  • 5. Review of Simulation Model Reports
  • 6. Summary
  • 7. Practice Problems
  • 1. Horsepower Required
  • 2. Effect of Gravity and Viscosity
  • 3. Gas: Horsepower
  • 4. Summary
  • 1. Introduction
  • 2. Liquid-Pump Stations
  • 3. Summary
  • 1. Introduction
  • 2.Compressor Station Locations
  • 3. Hydraulic Balance
  • 4. Isothermal Compression
  • 5. Adiabatic Compression
  • 6. Polytropic Compression
  • 7. Discharge Temperature of Compressed Gas
  • 8.Compression Power Required
  • 9. Optimum Compressor Locations
  • 10.Compressors in Series and Parallel
  • 11. Types of Compressors: Centrifugal and Positive Displacement
  • 12.Compressor Performance Curves
  • 13.Compressor Head and Gas Flow Rate
  • 14.Compressor Station Piping Losses
  • 15.Compressor Station Schematic
  • 16. Summary
  • 1. Series Piping
  • 2. Parallel Piping
  • 3. Locating Pipe Loop: Gas Pipelines
  • 1. History
  • 2. Flow Meters
  • 3. Venturi Meter
  • 4. Flow Nozzle
  • 5. Orifice Meter
  • 6. Turbine Meter.
  • 7. Positive Displacement Meter
  • 8. Purpose of Valves
  • 9. Types of Valves
  • 10. Material of Construction
  • 11. Codes for Design and Construction
  • 12. Gate Valve
  • 13. Ball Valve
  • 14. Plug Valve
  • 15. Butterfly Valve
  • 16. Globe Valve
  • 17. Check Valve
  • 18. Pressure Control Valve
  • 19. Pressure Regulator
  • 20. Pressure Relief Valve
  • 21. Flow Measurement
  • 22. Flow Meters
  • 23. Venturi Meter
  • 24. Flow Nozzle
  • 25. Summary
  • 1. Economic Analysis
  • 2. Capital Costs
  • 3. Operating Costs
  • 4. Feasibility Studies and Economic Pipe Size
  • 5. Gas Pipeline
  • 6. Capital Costs
  • 7. Operating Costs
  • 8. Determining Economic Pipe Size
  • 9. Summary
  • 10. Problems
  • 1. Introduction
  • 2. Case Study 1: Refined Products Pipeline (Isothermal Flow) Phoenix to Las Vegas Pipeline
  • 3. Case Study 2: Heavy Crude Oil Pipeline 2 Miles Long without Heaters
  • 4. Case Study 3: Heavy Crude Oil Pipeline from Joplin to Beaumont (Thermal Flow with Heaters and no Batching).
  • 5. Case Study 4: Heavy Crude Oil Pipeline (Thermal Flow with Heaters and DRA)
  • 6. Case Study 5: Water Pipeline from Page to Las Cruces
  • 7. Case Study 6: Gas Pipeline with Multiple Compressor Stations from Taylor to Jenks
  • 8. Case Study 7: Gas Pipeline Hydraulics with Injections and Deliveries
  • 9. Case Study 8: Gas Pipeline with Two Compressor Stations and Two Pipe Branches
  • 10. Sample Problem 9: A Pipeline with Two Compressor Stations, Two Pipe Branches, and a Pipe Loop in the Second Segment of the Pipeline to Handle an Increase in Flow
  • 11. Sample Problem 10: San Jose to Portas Pipeline with Injection and Delivery in SI Units.