|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn896857798 |
003 |
OCoLC |
005 |
20231120111915.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
141105s2015 mau ob 001 0 eng d |
040 |
|
|
|a UKMGB
|b eng
|e rda
|e pn
|c UKMGB
|d OCLCO
|d N$T
|d OPELS
|d OCLCF
|d UIU
|d KNOVL
|d B24X7
|d S9I
|d YDXCP
|d COO
|d ZCU
|d RRP
|d OCLCQ
|d ITD
|d OCLCQ
|d K6U
|d REB
|d U3W
|d D6H
|d CEF
|d WYU
|d UKAHL
|d LQU
|d UKMGB
|d OCLCQ
|d MM9
|d VT2
|d OCLCO
|d OCLCQ
|d UPM
|d OCLCQ
|
015 |
|
|
|a GBB4C8499
|2 bnb
|
016 |
7 |
|
|a 016941607
|2 Uk
|
019 |
|
|
|a 951661554
|a 1026449771
|a 1066618732
|a 1105172437
|a 1105569528
|a 1235834545
|
020 |
|
|
|a 9781856178310
|q (electronic bk.)
|
020 |
|
|
|a 1856178315
|q (electronic bk.)
|
020 |
|
|
|z 9781856178303
|
020 |
|
|
|z 1856178307
|
035 |
|
|
|a (OCoLC)896857798
|z (OCoLC)951661554
|z (OCoLC)1026449771
|z (OCoLC)1066618732
|z (OCoLC)1105172437
|z (OCoLC)1105569528
|z (OCoLC)1235834545
|
050 |
|
4 |
|a TJ930
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.8672
|2 23
|
100 |
1 |
|
|a Menon, E. Shashi,
|e author.
|
245 |
1 |
0 |
|a Transmission pipeline calculations and simulations manual /
|c E. Shashi Menon.
|
264 |
|
1 |
|a Waltham, MA :
|b Gulf Professional,
|c 2015.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO; viewed on February 10, 2015).
|
520 |
|
|
|a This manual is a valuable time- and money-saving tool that will help to quickly pinpoint essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. Its three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics include: pressure and temperature profile of natural gas pipelines; how to size pipelines for specified flow rate and pressure limitations; calculating the locations and HP of compressor stations and pumping stations on long distance pipelines. --
|c Edited summary from book.
|
505 |
0 |
|
|a 1. Trans-Alaska Pipeline (North America) -- 2. Tennessee Gas Pipeline (North America) -- 3. Rockies Express Pipeline (North America) -- 4. TransCanada Pipeline (North America) -- 5. The Bolivia-Brazil Pipeline (South America) -- 6. GasAndes Pipeline (South America) -- 7. Balgzand Bacton Pipeline (Europe) -- 8. Trans-Mediterranean Natural Gas Pipeline (Europe-Africa) -- 9. Yamal-Europe Pipeline (Europe-Asia) -- 10. South Caucasus Pipeline (Asia) -- 11. West-East Natural Gas Pipeline Project (China-Asia) -- 12. The Caspian Pipeline (Russia-Asia) -- Reference -- 1. Codes, Standards, and Regulations -- 2. Boiler and Pressure Vessel Code -- 3. Federal and State Laws -- 4. ASME Council for Codes and Standards -- 5. API Standards and Recommended Practices -- 6. Manufacturers Standardization Society -- 7. Pipe Fabrication Institute Standards -- 8. American Institute of Steel Construction -- 9. American Concrete Institute -- 10. National Association of Corrosion Engineers.
|
505 |
8 |
|
|a 11. Fluid Control Institute Standards -- 12. Hydraulics Institute Pump Standards -- 1. Properties of Liquids and Gases -- 2. Units of Measurement -- 3. Mass, Volume, Density, and Specific Weight -- 4. Specific Gravity and API Gravity -- 5. Viscosity -- 6. Vapor Pressure -- 7. Bulk Modulus -- 8. Fundamental Concepts of Fluid Flow -- 9. Gas Properties -- 10. Mass -- 11. Volume -- 12. Density and Specific Weight -- 13. Specific Gravity -- 14. Viscosity -- 15. Ideal Gases -- 16. Real Gases -- 17. Natural Gas Mixtures -- 18. Pseudo Critical Properties from Gravity -- 19. Adjustment for Sour Gas and Nonhydrocarbon Components -- 20.Compressibility Factor -- 21. Heating Value -- 22. Summary -- 23. Problems -- 1. Allowable Operating Pressure and Hydrostatic Test Pressure -- 2. Barlow's Equation for Internal Pressure -- 3. Gas Transmission Pipeline: Class Location -- 4. Line Fill Volume and Batches -- 5. Gas Pipelines -- 6. Barlow's Equation -- 7. Thick Wall Pipes.
|
505 |
8 |
|
|a 8. Derivation of Barlow's Equation -- 9. Pipe Material and Grade -- 10. Internal Design Pressure Equation -- 11. Mainline Valves -- 12. Hydrostatic Test Pressure -- 13. Blowdown Calculations -- 14. Determining Pipe Tonnage -- 15. Summary -- 1. Liquid Pressure -- 2. Liquid: Velocity -- 3. Liquid: Reynolds Number -- 4. Flow Regimes -- 5. Friction Factor -- 6. Pressure Drop from Friction -- 7. Colebrook-White Equation -- 8. Hazen-Williams Equation -- 9. Shell-MIT Equation -- 10. Miller Equation -- 11.T.R. Aude Equation -- 12. Minor Losses -- 13. Internally Coated Pipes and Drag Reduction -- 14. Fluid Flow in Gas Pipelines -- 15. Flow Equations -- 16. General Flow Equation -- 17. Effect of Pipe Elevations -- 18. Average Pipe Segment Pressure -- 19. Velocity of Gas in a Pipeline -- 20. Erosional Velocity -- 21. Reynolds Number of Flow -- 22. Friction Factor -- 23. Colebrook-White Equation -- 24. Transmission Factor -- 25. Modified Colebrook-White Equation -- 26. AGA Equation.
|
505 |
8 |
|
|a 27. Weymouth Equation -- 28. Panhandle A Equation -- 29. Panhandle B Equation -- 30. Institute of Gas Technology Equation -- 31. Spitzglass Equation -- 32. Mueller Equation -- 33. Fritzsche Equation -- 34. Effect of Pipe Roughness -- 35.Comparison of Flow Equations -- 36. Summary -- 1. Total Pressure Drop Required to Pump a Given Volume of Fluid through a Pipeline -- 2. Frictional Component -- 3. Effect of Pipeline Elevation -- 4. Effect of Changing Pipe Delivery Pressure -- 5. Pipeline with Intermediate Injections and Deliveries -- 6. System Head Curves: Liquid Pipelines -- 7. Hydraulic Pressure Gradient: Liquid Pipeline -- 8. Transporting High Vapor Pressure Liquids -- 9. Hydraulic Pressure Gradient: Gas Pipeline -- 10. Pressure Regulators and Relief Valves -- 11. Summary -- 1. Temperature-Dependent Flow -- 2. Formulas for Thermal Hydraulics: Liquid Pipelines -- 3. Isothermal versus Thermal Hydraulics: Gas Pipelines -- 4. Temperature Variation and Gas Pipeline Modeling.
|
505 |
8 |
|
|a 5. Review of Simulation Model Reports -- 6. Summary -- 7. Practice Problems -- 1. Horsepower Required -- 2. Effect of Gravity and Viscosity -- 3. Gas: Horsepower -- 4. Summary -- 1. Introduction -- 2. Liquid-Pump Stations -- 3. Summary -- 1. Introduction -- 2.Compressor Station Locations -- 3. Hydraulic Balance -- 4. Isothermal Compression -- 5. Adiabatic Compression -- 6. Polytropic Compression -- 7. Discharge Temperature of Compressed Gas -- 8.Compression Power Required -- 9. Optimum Compressor Locations -- 10.Compressors in Series and Parallel -- 11. Types of Compressors: Centrifugal and Positive Displacement -- 12.Compressor Performance Curves -- 13.Compressor Head and Gas Flow Rate -- 14.Compressor Station Piping Losses -- 15.Compressor Station Schematic -- 16. Summary -- 1. Series Piping -- 2. Parallel Piping -- 3. Locating Pipe Loop: Gas Pipelines -- 1. History -- 2. Flow Meters -- 3. Venturi Meter -- 4. Flow Nozzle -- 5. Orifice Meter -- 6. Turbine Meter.
|
505 |
8 |
|
|a 7. Positive Displacement Meter -- 8. Purpose of Valves -- 9. Types of Valves -- 10. Material of Construction -- 11. Codes for Design and Construction -- 12. Gate Valve -- 13. Ball Valve -- 14. Plug Valve -- 15. Butterfly Valve -- 16. Globe Valve -- 17. Check Valve -- 18. Pressure Control Valve -- 19. Pressure Regulator -- 20. Pressure Relief Valve -- 21. Flow Measurement -- 22. Flow Meters -- 23. Venturi Meter -- 24. Flow Nozzle -- 25. Summary -- 1. Economic Analysis -- 2. Capital Costs -- 3. Operating Costs -- 4. Feasibility Studies and Economic Pipe Size -- 5. Gas Pipeline -- 6. Capital Costs -- 7. Operating Costs -- 8. Determining Economic Pipe Size -- 9. Summary -- 10. Problems -- 1. Introduction -- 2. Case Study 1: Refined Products Pipeline (Isothermal Flow) Phoenix to Las Vegas Pipeline -- 3. Case Study 2: Heavy Crude Oil Pipeline 2 Miles Long without Heaters -- 4. Case Study 3: Heavy Crude Oil Pipeline from Joplin to Beaumont (Thermal Flow with Heaters and no Batching).
|
505 |
8 |
|
|a 5. Case Study 4: Heavy Crude Oil Pipeline (Thermal Flow with Heaters and DRA) -- 6. Case Study 5: Water Pipeline from Page to Las Cruces -- 7. Case Study 6: Gas Pipeline with Multiple Compressor Stations from Taylor to Jenks -- 8. Case Study 7: Gas Pipeline Hydraulics with Injections and Deliveries -- 9. Case Study 8: Gas Pipeline with Two Compressor Stations and Two Pipe Branches -- 10. Sample Problem 9: A Pipeline with Two Compressor Stations, Two Pipe Branches, and a Pipe Loop in the Second Segment of the Pipeline to Handle an Increase in Flow -- 11. Sample Problem 10: San Jose to Portas Pipeline with Injection and Delivery in SI Units.
|
650 |
|
0 |
|a Pipelines.
|
650 |
|
6 |
|a Pipelines.
|0 (CaQQLa)201-0008533
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Pipelines.
|2 fast
|0 (OCoLC)fst01064626
|
776 |
0 |
8 |
|i Print version:
|a Menon, E. Shashi.
|t Transmission pipeline calculations and simulations manual.
|d Waltham, Massachusetts ; Kidlingron, Oxford : Gulf Publishing Company, �2014
|h xii, 599 pages
|z 9781856178303
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781856178303
|z Texto completo
|