Ab initio valence calculations in chemistry /
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schr�odinger equation and the orbital approximation to atomic orbitals; molecul...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London [England] :
Butterworths,
1974.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Ab Initio Valence Calculations in Chemistry; Copyright Page; PREFACE; ACKNOWLEDGEMENTS; Table of Contents; CHAPTER 1. INTRODUCTION; CHAPTER 2. THE SCHR�ODINGER EQUATION; 2.1 NOTATION AND DEFINITIONS; 2.2 THE SCHR�ODINGER EQUATION; 2.3 THE PAULI PRINCIPLE; 2.4 CONSTRAINTS ON THE SCHR�ODINGER EQUATION; 2.5 PROPERTIES OF THE MOLECULAR WAVE FUNCTION; 2.6 DENSITY FUNCTIONS; 2.7 SOLUTIONS OF THE SCHRODINGER EQUATION; 2.8 ATOMIC UNITS; CHAPTER 3. THE ORBITAL APPROXIMATION; 3.1 THE ORBITAL MODEL; 3.2 THE SCHR�ODINGER EQUATION IN AN ORBITAL BASIS.
- 3.3 electron spin and the imposition of the pauli principle3.4 full statement of the orbital model; 3.5 the variation method; 3.6 use of the variation principle; 3.7 the linear variation method; 3.8 addendum
- the formal content of chapter 3; chapter 4. atomic orbitals; 4.1 the one-configuration model; 4.2 the roothaan-hartree-fock method for atoms; 4.3 the interpretation of the rhf equation; 4.4 the use of non-orthogonal basis functions; 4.5 summary; chapter 5. the molecular orbital and valence bond methods; 5.1 survey of the molecular orbital and valence bond methods.
- 5.2 the molecular-orbital (mo) method5.3 the valence bond (vb) method; 5.4 the evaluation of vb matrix elements
- the slater/l�owdin rules; chapter 6. practical molecular wave functions; 6.1 further approximations?; 6.2 molecular integral considerations; 6.3 approximate atomic orbitals; 6.4 contraction techniques; 6.5 summary of approximations; 6.6 example
- the beryllium and hydrogen atoms; chapter 7. the general strategy; 7.1 ""systems analysis'; 7.2 computation of molecular integrals; 7.3 the matrix lcao mo equations; 7.4 the diagonalisation of symmetric matrices; 7.5 complications.
- 7.6 THE VIRTUAL ORBITALSCHAPTER 8. MOLECULAR INTEGRALS
- COMPUTATION AND STORAGE; 8.1 MOLECULAR INTEGRALS; 8.2 NOTATION; 8.3 MOLECULAR INTEGRALS USING AN STO BASIS; 8.4 MOLECULAR INTEGRALS USING A GTF BASIS; 8.5 PHYSICAL INTERPRETATION AND ORDERS OF MAGNITUDE; 8.6 THE COMPUTER STORAGE OF MOLECULAR INTEGRALS
- CONVENTIONS; 8.7 FORMATION OF THE MATRIX G(R); 8.8 THE USE OF AN INTEGRAL FILE IN THE VB METHOD; 8.9 APPLICATION TO BeH2; CHAPTER 9 . ORBITAL TRANSFORMATIONS; 9.1 RECAPITULATION; 9.2 ORBITAL TRANSFORMATIONS AMONG THE AO'S; 9.3 TRANSFORMATIONS AMONG THE MO'S.
- 9.4 THE RHF EQUATIONS IN A NON-ORTHOGONAL BASIS9.5 TRANSFORMATION INDUCED IN THE ELECTRON REPULSION INTEGRALS; 9.6 ORBITAL TRANSFORMATIONS AND THE VB METHOD; 9.7 ORTHOGONALISATION METHODS; 9.8 COMPOSITE ORTHOGONALISATION METHODS; 9.9 APPLICATION TO BeH2; CHAPTER 10. POPULATION ANALYSIS AND PHYSICAL INTERPRETATION; 10.1 QUALITATIVE AND QUANTITATIVE INFORMATION; 10.2 POPULATION ANALYSIS; 10.3 POPULATION ANALYSIS IN PRACTICE; 10.4 COMPUTATION OF MOLECULAR PROPERTIES; CHAPTER 11. OPEN SHELL SYSTEMS; 11.1 UNPAIRED ELECTRONS; 11.2 DIFFERENT ORBITALS FOR DIFFERENT SPINS* (DODS).