|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn896825973 |
003 |
OCoLC |
005 |
20231120111909.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141124s1993 caua ob 101 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d EBLCP
|d NLGGC
|d DEBSZ
|d OCLCO
|d YDXCP
|d OCL
|d OCLCO
|d OCLCA
|d MERUC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 898772104
|
020 |
|
|
|a 9781483214511
|q (electronic bk.)
|
020 |
|
|
|a 1483214516
|q (electronic bk.)
|
020 |
|
|
|z 9781558603066
|
020 |
|
|
|z 9781558602588
|
035 |
|
|
|a (OCoLC)896825973
|z (OCoLC)898772104
|
050 |
|
4 |
|a Q334
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3
|2 22
|
245 |
0 |
0 |
|a Uncertainty in artificial intelligence :
|b proceedings of the Ninth Conference (1993) : July 9-11, 1993, the Catholic University of America, Washington, D.C. /
|c edited by David Heckerman, Abe Mamdani.
|
264 |
|
1 |
|a San Mateo, Calif. :
|b Morgan Kaufmann Publishers,
|c 1993.
|
264 |
|
4 |
|c �1993
|
300 |
|
|
|a 1 online resource (vi, 542 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Uncertainty inArtificialIntelligence; Copyright Page; Table of Contents; Preface; Acknowledgements; Part 1: Foundations; Chapter 1. Causality in Bayesian Belief Networks; Abstract; 1 INTRODUCTION; 2 SIMULTANEOUS EQUATIONS MODELS; 3 CAUSALITY IN BAYESIAN BELIEF NETWORKS; 4 CONCLUSION; Acknowledgments; References; Chapter 2. From Conditional Oughts to Qualitative Decision Theory; Abstract; 1 INTRODUCTION; 2 INFINITESIMALPROBABILITIES, RANKINGFUNCTIONS, CAUSALNETWORKS, AND ACTIONS; 3 SUMMARY OF RESULTS; 4 FROM UTILITIES AND BELIEFS TO GOALS AND ACTIONS.
|
505 |
8 |
|
|a 5 COMBINING ACTIONS AND OBSERVATIONS6 RELATIONS TO OTHER ACCOUNTS; 7 CONCLUSION; Acknowledgements; References; Part 2: Applications and Empirical Comparisons; Chapter 3. A Probabilistic Algorithm for Calculating Structure:Borrowing from Simulated Annealing; Abstract; 1 MOLECULAR STRUCTURE; 2 THE DATA REPRESENTATION; 3 EXPERIMENTS PERFORMED; 4 RESULTS; 5 DISCUSSION; 6 CONCLUSIONS; Acknowledgements; References; Chapter 4. A Study of Scaling Issues in Bayesian Belief Networks for Ship Classification; Abstract; 1 Introduction; 2 Overview; 3 Network Structure; 4 Integration of Belief Values.
|
505 |
8 |
|
|a 5 Discussion6 Conclusion; References; CHAPTER 5. TRADEOFFS IN CONSTRUCTING AND EVALUATING TEMPORAL INFLUENCE DIAGRAMS; Abstract; 1 INTRODUCTION; 2 TEMPORAL BAYESIAN NETWORKS; 3 TID CONSTRUCTION FROM KNOWLEDGE BASES; 4 DOMAIN-SPECIFIC TIME-SERIES MODELS; 5 MODEL SELECTION APPROACHES; 6 EVALUATING TRADEOFFS; 7 RELATED LITERATURE; 8 CONCLUSIONS; Acknowledgements; References; Chapter 6. End-User Construction of Influence Diagrams for Bayesian Statistics; Abstract; 1 INTRODUCTION; 2 STATISTICAL MODEL; 3 SEMANTIC INTERFACE: THE PATIENT-FLOW DIAGRAM.
|
505 |
8 |
|
|a 4 METADATA-STATE DIAGRAM: THE COHORT-STATE DIAGRAM5 CONSTRUCTION STEPS; 6 IMPLEMENTATION; 7 OTHER WORK; 8 CONCLUSION; Acknowledgments; References; Chapter 7. On Considering Uncertainty and Alternatives in Low-Level Vision; Abstract; 1 INTRODUCTION; 2 REGIONS, SEGMENTS, AND SEGMENTATIONS; 3 SEGMENT-LEVEL UNCERTAINTY; 4 SEGMENTATION-LEVEL UNCERTAINTY; 5 REGION-LEVEL UNCERTAINTY; 6 OBTAINING PRIORS; 7 ALGORITHMS; 8 AN EXPERIMENTAL EXAMPLE; 9 CONCLUSION; Acknowledgement; References; Chapter 8. Forecasting Sleep Apnea with Dynamic Network Models; Abstract; 1 INTRODUCTION; 2 RELATED WORK.
|
505 |
8 |
|
|a 3 THE DYNAMIC NETWORK MODEL4 THE DYNEMO IMPLEMENTATION; 5 THE SLEEP-APNEA FORECASTING PROBLEM; 6 CONCLUSIONS; Acknowledgments; References; Chapter 9. Normative Engineering Risk Management Systems; Abstract; 1 INTRODUCTION; 2 ENGINEERING RISK MANAGEMENT SYSTEMS; 3 ADVANCED RISK MANAGEMENT SYSTEM PROJECT; 4 NORMATIVE SYSTEM OVERVIEW; 5 NORMATIVE SYSTEM ACTIVITIES; 6 RESEARCH ISSUES; 7 CONCLUSIONS; Acknowledgements; References; Chapter 10. Diagnosis of Multiple Faults: A Sensitivity Analysis; Abstract; 1 INTRODUCTION; 2 THE MODELS; 3 EXPERIMENTAL DESIGN; 4 RESULTS AND DISCUSSION.
|
520 |
|
|
|a Uncertainty in Artificial Intelligence.
|
650 |
|
0 |
|a Artificial intelligence
|v Congresses.
|
650 |
|
0 |
|a Uncertainty (Information theory)
|v Congresses.
|
650 |
|
6 |
|a Intelligence artificielle
|0 (CaQQLa)201-0008626
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
6 |
|a Incertitude (Th�eorie de l'information)
|0 (CaQQLa)201-0003328
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|0 (OCoLC)fst00817247
|
650 |
|
7 |
|a Uncertainty (Information theory)
|2 fast
|0 (OCoLC)fst01160838
|
650 |
|
7 |
|a Kongress
|2 gnd
|0 (DE-588)4130470-6
|
650 |
|
7 |
|a K�unstliche Intelligenz
|2 gnd
|0 (DE-588)4033447-8
|
650 |
|
7 |
|a Unvollkommene Information
|2 gnd
|0 (DE-588)4140474-9
|
650 |
|
7 |
|a Intelligence artificielle
|x Congr�es.
|2 ram
|
650 |
|
7 |
|a Incertitude (th�eorie de l'information)
|x Congr�es.
|2 ram
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|0 (CStmoGRI)aatgf300027316
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
655 |
|
7 |
|a Washington (DC, 1993)
|2 swd
|
700 |
1 |
|
|a Heckerman, David E.,
|e editor.
|
700 |
1 |
|
|a Mamdani, Abe,
|e editor.
|
711 |
2 |
|
|a Conference on Uncertainity in Artificial Intelligence
|n (9th :
|d 1993 :
|c Catholic University of America)
|
776 |
0 |
8 |
|i Print version:
|t Uncertainty in artificial intelligence
|z 1558603069
|w (OCoLC)29265800
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781483214511
|z Texto completo
|