|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn896825055 |
003 |
OCoLC |
005 |
20231120111909.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141124s1994 caua ob 101 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCO
|d OCL
|d OCLCO
|d MERUC
|d IDB
|d OCLCQ
|d STF
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 897647144
|a 906924801
|
020 |
|
|
|a 9781483298184
|q (electronic bk.)
|
020 |
|
|
|a 1483298183
|q (electronic bk.)
|
020 |
|
|
|z 9781558603356
|
020 |
|
|
|z 1558603352
|q (pbk.)
|
035 |
|
|
|a (OCoLC)896825055
|z (OCoLC)897647144
|z (OCoLC)906924801
|
050 |
|
4 |
|a Q325.5.M336
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3/1
|2 22
|
245 |
0 |
0 |
|a Machine learning :
|b proceedings of the eleventh international conference /
|c edited by William W. Cohen, Haym Hirsh.
|
264 |
|
1 |
|a San Francisco, CA :
|b Morgan Kaufmann,
|c [1994]
|
264 |
|
4 |
|c �1994
|
300 |
|
|
|a 1 online resource (x, 381 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a "Rutgers University, New Brunswick, N.J., July 10-13, 1994."
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Machine Learning; Copyright Page; Table of Contents; Preface; WORKSHOPS; TUTORIALS; ORGANIZING COMMITTEE; PROGRAM COMMITTEE; PART 1: CONTRIBUTED PAPERS; Chapter 1. A New Method for Predicting Protein Secondary Structures Based on StochasticTree Grammars; Abstract; 1 Introduction; 2 Stochastic Ranked NodeRewriting Grammars; 3 Modeling Beta Sheet Structureswith RNRG; 4 Learning and Parsing of aRestricted Subclass; 5 Experimental Results; 6 Concluding Remarks; References; Chapter 2. Learning Recursive Relationswith Randomly Selected Small Training Sets; Abstract; 1 MOTIVATION.
|
505 |
8 |
|
|a 2 Review of CRUSTACEAN3 EVALUATION; 4 RELATED WORK; 5 CONCLUSION; Acknowledgements; References; Chapter 3. Improving Accuracy of Incorrect DomainTheories; Abstract; 1 INTRODUCTION; 2 KNOWLEDGE INTENSIVETHEORY REFINEMENT; 3 A DESCRIPTION OF GENTRE; 4 EXPERIMENTAL EVALUATION; 5 CONCLUSIONS; Acknowledgements; References; Chapter 4. Greedy Attribute Selection; Abstract; 1 INTRODUCTION; 2 ATTRIBUTE SELECTION IN CAP; 3 ATTRIBUTE HILLCLIMBING; 4 CACHING TO SPEED SEARCH; 5 EMPIRICAL ANALYSIS; 6 FOCUS and RELIEF; 7 CONCLUSION; Acknowledgements; References.
|
505 |
8 |
|
|a Chapter 5. Using Sampling and Queries to Extract Rules from Trained Neural NetworksAbstract; 1 INTRODUCTION; 2 RULE EXTRACTION ASSEARCH; 3 RULE EXTRACTION ASLEARNING; 4 EXTRACTING M-of-NRULES; 5 FUTURE WORK; 6 CONCLUSIONS; Acknowledgements; References; Chapter 6. The Generate, Test, and Explain Discovery System Architecture; Abstract; 1 INTRODUCTION AND MOTIVATION; 2 ARCHITECTURE; 3 APPLICATIONS; 4 RELATED WORK; 5 LIMITATIONS, FUTURE WORK, ANDCONCLUSIONS; Acknowledgments; References; Chapter 7. Boosting and Other Machine Learning Algorithms; Abstract; 1. INTRODUCTION; 2. PROCEDURE.
|
505 |
8 |
|
|a 3. OTHER MACHINE LEARNINGTECHNIQUES4. CONCLUSIONS; References; Chapter 8. In Defense of C4.5: Notes on Learning One-Level Decision Trees; Abstract; 1 INTRODUCTION; 2 PREDICTION ACCURACY; 3 TEST DOMAINS; 4 UPPER BOUND ON CLASSIFICATIONACCURACY; 5 THE COMPLEXITY OF A CLASSIFIER; 6 RELATED WORK; 7 CONCLUSION; Acknowledgements; References; Chapter 9. Incremental Reduced Error Pruning; Abstract; 1 INTRODUCTION; 2 SOME PROBLEMS WITH REDUCEDERROR PRUNING; 3 COHEN'S GROWALGORITHM; 4 INCREMENTALREP; 5 EXPERIMENTS; 6 CONCLUSION; Acknowledgements; References.
|
505 |
8 |
|
|a Chapter 10. An Incremental Learning Approach for CompletablePlanningAbstract; 1 INTRODUCTION; 2 COMPLETABLE PLANNING; 3 LEARNING COMPLETABLE PLANS; 4 EXPERIMENTS; 5 DISCUSSION; Acknowledgments; References; Chapter 11. Learning by Experimentation: Incremental Refinement of Incomplete Planning Domains; Abstract; 1 Introduction; 2 Planning with Incomplete Models; 3 Incremental Refinement of PlanningDomains through Experimentation; 4 Empirical Results; 5 Conclusion; Acknowledgments; References; Chapter 12. Learning Disjunctive Concepts by Means of GeneticAlgorithms; Abstract; 1 INTRODUCTION.
|
520 |
|
|
|a Machine Learning Proceedings 1994.
|
650 |
|
0 |
|a Machine learning
|v Congresses.
|
650 |
|
6 |
|a Apprentissage automatique
|0 (CaQQLa)201-0131435
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|0 (CStmoGRI)aatgf300027316
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
700 |
1 |
|
|a Cohen, William W.,
|e editor.
|
700 |
1 |
|
|a Hirsh, Haym,
|d 1963-
|e editor.
|
711 |
2 |
|
|a International Conference on Machine Learning
|n (11th :
|d 1994 :
|c New Brunswick, N.J.)
|
776 |
0 |
8 |
|i Print version:
|t Machine learning
|z 1558603352
|w (DLC) 94021011
|w (OCoLC)474133639
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781558603356
|z Texto completo
|