Cargando…

Machine learning : proceedings of the eleventh international conference /

Machine Learning Proceedings 1994.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: International Conference on Machine Learning
Otros Autores: Cohen, William W. (Editor ), Hirsh, Haym, 1963- (Editor )
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: San Francisco, CA : Morgan Kaufmann, [1994]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn896825055
003 OCoLC
005 20231120111909.0
006 m o d
007 cr cnu---unuuu
008 141124s1994 caua ob 101 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCO  |d OCL  |d OCLCO  |d MERUC  |d IDB  |d OCLCQ  |d STF  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 897647144  |a 906924801 
020 |a 9781483298184  |q (electronic bk.) 
020 |a 1483298183  |q (electronic bk.) 
020 |z 9781558603356 
020 |z 1558603352  |q (pbk.) 
035 |a (OCoLC)896825055  |z (OCoLC)897647144  |z (OCoLC)906924801 
050 4 |a Q325.5.M336 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 22 
245 0 0 |a Machine learning :  |b proceedings of the eleventh international conference /  |c edited by William W. Cohen, Haym Hirsh. 
264 1 |a San Francisco, CA :  |b Morgan Kaufmann,  |c [1994] 
264 4 |c �1994 
300 |a 1 online resource (x, 381 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a "Rutgers University, New Brunswick, N.J., July 10-13, 1994." 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Machine Learning; Copyright Page; Table of Contents; Preface; WORKSHOPS; TUTORIALS; ORGANIZING COMMITTEE; PROGRAM COMMITTEE; PART 1: CONTRIBUTED PAPERS; Chapter 1. A New Method for Predicting Protein Secondary Structures Based on StochasticTree Grammars; Abstract; 1 Introduction; 2 Stochastic Ranked NodeRewriting Grammars; 3 Modeling Beta Sheet Structureswith RNRG; 4 Learning and Parsing of aRestricted Subclass; 5 Experimental Results; 6 Concluding Remarks; References; Chapter 2. Learning Recursive Relationswith Randomly Selected Small Training Sets; Abstract; 1 MOTIVATION. 
505 8 |a 2 Review of CRUSTACEAN3 EVALUATION; 4 RELATED WORK; 5 CONCLUSION; Acknowledgements; References; Chapter 3. Improving Accuracy of Incorrect DomainTheories; Abstract; 1 INTRODUCTION; 2 KNOWLEDGE INTENSIVETHEORY REFINEMENT; 3 A DESCRIPTION OF GENTRE; 4 EXPERIMENTAL EVALUATION; 5 CONCLUSIONS; Acknowledgements; References; Chapter 4. Greedy Attribute Selection; Abstract; 1 INTRODUCTION; 2 ATTRIBUTE SELECTION IN CAP; 3 ATTRIBUTE HILLCLIMBING; 4 CACHING TO SPEED SEARCH; 5 EMPIRICAL ANALYSIS; 6 FOCUS and RELIEF; 7 CONCLUSION; Acknowledgements; References. 
505 8 |a Chapter 5. Using Sampling and Queries to Extract Rules from Trained Neural NetworksAbstract; 1 INTRODUCTION; 2 RULE EXTRACTION ASSEARCH; 3 RULE EXTRACTION ASLEARNING; 4 EXTRACTING M-of-NRULES; 5 FUTURE WORK; 6 CONCLUSIONS; Acknowledgements; References; Chapter 6. The Generate, Test, and Explain Discovery System Architecture; Abstract; 1 INTRODUCTION AND MOTIVATION; 2 ARCHITECTURE; 3 APPLICATIONS; 4 RELATED WORK; 5 LIMITATIONS, FUTURE WORK, ANDCONCLUSIONS; Acknowledgments; References; Chapter 7. Boosting and Other Machine Learning Algorithms; Abstract; 1. INTRODUCTION; 2. PROCEDURE. 
505 8 |a 3. OTHER MACHINE LEARNINGTECHNIQUES4. CONCLUSIONS; References; Chapter 8. In Defense of C4.5: Notes on Learning One-Level Decision Trees; Abstract; 1 INTRODUCTION; 2 PREDICTION ACCURACY; 3 TEST DOMAINS; 4 UPPER BOUND ON CLASSIFICATIONACCURACY; 5 THE COMPLEXITY OF A CLASSIFIER; 6 RELATED WORK; 7 CONCLUSION; Acknowledgements; References; Chapter 9. Incremental Reduced Error Pruning; Abstract; 1 INTRODUCTION; 2 SOME PROBLEMS WITH REDUCEDERROR PRUNING; 3 COHEN'S GROWALGORITHM; 4 INCREMENTALREP; 5 EXPERIMENTS; 6 CONCLUSION; Acknowledgements; References. 
505 8 |a Chapter 10. An Incremental Learning Approach for CompletablePlanningAbstract; 1 INTRODUCTION; 2 COMPLETABLE PLANNING; 3 LEARNING COMPLETABLE PLANS; 4 EXPERIMENTS; 5 DISCUSSION; Acknowledgments; References; Chapter 11. Learning by Experimentation: Incremental Refinement of Incomplete Planning Domains; Abstract; 1 Introduction; 2 Planning with Incomplete Models; 3 Incremental Refinement of PlanningDomains through Experimentation; 4 Empirical Results; 5 Conclusion; Acknowledgments; References; Chapter 12. Learning Disjunctive Concepts by Means of GeneticAlgorithms; Abstract; 1 INTRODUCTION. 
520 |a Machine Learning Proceedings 1994. 
650 0 |a Machine learning  |v Congresses. 
650 6 |a Apprentissage automatique  |0 (CaQQLa)201-0131435  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a Cohen, William W.,  |e editor. 
700 1 |a Hirsh, Haym,  |d 1963-  |e editor. 
711 2 |a International Conference on Machine Learning  |n (11th :  |d 1994 :  |c New Brunswick, N.J.) 
776 0 8 |i Print version:  |t Machine learning  |z 1558603352  |w (DLC) 94021011  |w (OCoLC)474133639 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781558603356  |z Texto completo