Cargando…

A course of higher mathematics. Volume V, Integration and functional analysis /

International Series of Monographs in Pure and Applied Mathematics, Volume 62: A Course of Higher Mathematics, V: Integration and Functional Analysis focuses on the theory of functions. The book first discusses the Stieltjes integral. Concerns include sets and their powers, Darboux sums, improper St...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Smirnov, V. I. (Vladimir Ivanovich), 1887-1974 (Autor)
Otros Autores: Sneddon, Ian Naismith (translation.)
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: Oxford : Pergamon Press, 1964.
Colección:International series of monographs in pure and applied mathematics ; 62.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn896723755
003 OCoLC
005 20231120111909.0
006 m o d
007 cr cnu---unuuu
008 141121s1964 enk o 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d EBLCP  |d NLGGC  |d DEBSZ  |d YDXCP  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d HNC  |d E7B  |d OCLCF  |d VLY  |d OCLCO 
066 |c (S 
019 |a 898771872  |a 903954362  |a 922373824  |a 922519320 
020 |a 9781483139371  |q (electronic bk.) 
020 |a 1483139379  |q (electronic bk.) 
020 |z 0080137199 
020 |z 9780080137193 
020 |a 9781483222509  |q (e-book) 
020 |a 1483222500  |q (e-book) 
020 |z 9781483197470 
035 |a (OCoLC)896723755  |z (OCoLC)898771872  |z (OCoLC)903954362  |z (OCoLC)922373824  |z (OCoLC)922519320 
041 1 |a eng  |h rus 
050 4 |a QA300 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 22 
100 1 |a Smirnov, V. I.  |q (Vladimir Ivanovich),  |d 1887-1974,  |e author. 
245 1 2 |a A course of higher mathematics.  |n Volume V,  |p Integration and functional analysis /  |c V.I. Smirnov ; translated [from the Russian] by D.E. Brown ; translation edited by I.N. Sneddon 
264 1 |a Oxford :  |b Pergamon Press,  |c 1964. 
300 |a 1 online resource (648 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International series of monographs on pure and applied mathematics ;  |v 62 
500 |a Translation of: Kurs vysshei matematiki; Moscow, 1939-49. 
588 0 |a Print version record. 
505 0 |a Front Cover; Higher Mathematics; Copyright Page ; Table of Contents; INTRODUCTION; PREFACE; CHAPTER 1. THE STIELTJES INTEGRAL; 1. Sets and their powers; 2. The Stieltjes integral and its basic properties; 3. Darboux sums; 4. The Stieltjes integral of a continuous function; 5� The improper Stieltjes integral; 6. Jump functions; 7. Physical interpretation; 8. Functions of bounded variation; 9� An integrating function of bounded variation; 10. Existence of the Stieltjes integral; 11. Passage to the limit in the Stieltjes integral; 12. Helly's theorem; 13. Selection principle. 
505 8 |a 14. Space of continuoue fonctione15. General form of the functional in space C; 16. Linear operators in C; 17� Functions of an interval; 18. The general Stieltjes integral; 19. Properties of the (general) Stieltjes integral; 20. The existence of the general Stieltjes integral; 21� Functions of a two-dimensional interval; 22. Passage to point functions; 23. The Stieltjes integral on a plane; 24. Functions of bounded variation on the plane; 25. The space of continuous functions of several variables; 26. The Fourier-Stieltjes integral; 27. Inversion formula; 28. ConvoIution theorem. 
505 8 |6 880-01  |a 44. The limit of a measurable function45. The C properly; 46. Piecewise constant functions; 47. Class B ; 3. The Lebesgue integral; 48. The integral of a bounded function; 49. Properties of the integral; 50� The integral of a non-negative unbounded function; 51. Properties of the integral; 52� Functions of any sign; 53. Complex summable functions; 54. Passage to the limit under the integral sign; 55� The class L2; 56. Convergence in the mean; 57. Hilbert function space; 58� Orthogonal systems of functions; 59. The space l2; 60. Lineals in L2; 61. Examples of closed systems. 
505 8 |a 62. The Holder and Minhkoskii inequalities63. Integral over a set of infinite measure; 64. The class L2 on a set of infinite measure; 65� An integrating function of bounded variation; 66. The reduction of multiple integrals; 67� The case of the characteristic function; 68� Fubini's theorem; 69. Change of the order of integration; 70. Continuity in the mean; 71. Mean functions; CHAPTER 3. SET FUNCTIONS. ABSOLUTE CONTINUITY GENERALIZATION OF THE INTEGRAL; 72. Additive set functions; 73. Siogular function; 74� The case of one variable; 75. Absolutely continuous set functions; 76. Example. 
520 |a International Series of Monographs in Pure and Applied Mathematics, Volume 62: A Course of Higher Mathematics, V: Integration and Functional Analysis focuses on the theory of functions. The book first discusses the Stieltjes integral. Concerns include sets and their powers, Darboux sums, improper Stieltjes integral, jump functions, Helly's theorem, and selection principles. The text then takes a look at set functions and the Lebesgue integral. Operations on sets, measurable sets, properties of closed and open sets, criteria for measurability, and exterior measure and its properties are discuss. 
650 0 |a Mathematical analysis. 
650 6 |a Analyse math�ematique.  |0 (CaQQLa)201-0001156 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematical analysis  |2 fast  |0 (OCoLC)fst01012068 
700 1 |a Sneddon, Ian Naismith,  |e translation. 
776 0 8 |i Print version:  |a Smirnov, V.I. (Vladimir Ivanovich), 1887-1974.  |t Course of higher mathematics / Vol. 5, [Integration and functional analysis]  |z 0080137199  |w (OCoLC)502218765 
830 0 |a International series of monographs in pure and applied mathematics ;  |v 62. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080137193  |z Texto completo 
880 8 |6 505-01/(S  |a 29. The Cauchy-Stieltjes integralCHAPTER 2. SET FUNCTIONS AND THE LEBESGUE INTEGRAL; 1� Set functions and the theory of measure; 30. Operations on sets; 31� Point sets; 32� Properties of closed and open sets; 33. Elementary figures; 34. Exterior measure and its properties; 35. Measurable sets; 36. Measurable sets (continued); 37. Criteria for measurability; 38. Field of sets; 39. Independence of the choice of axes; 40. The Β field; 41. The case of a single variable; 2� Measurable functions; 42. Definition of measurable function; 43. Properties of measurable functions.