Cargando…

Regular figures /

Regular Figures concerns the systematology and genetics of regular figures. The first part of the book deals with the classical theory of the regular figures. This topic includes description of plane ornaments, spherical arrangements, hyperbolic tessellations, polyhedral, and regular polytopes. The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fejes T�oth, L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Pergamon Press, 1964.
Colección:International series in pure and applied mathematics ; 48.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn896412951
003 OCoLC
005 20231120111907.0
006 m o d
007 cr cnu---unuuu
008 141120s1964 xx a o 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d E7B  |d OCLCF  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9780080100586 
035 |a (OCoLC)896412951 
050 4 |a QA174.7.S96 
082 0 4 |a 516/.1  |2 23 
100 1 |a Fejes T�oth, L.,  |e author. 
245 1 0 |a Regular figures /  |c L. Fejes T�oth. 
264 1 |a [Place of publication not identified] :  |b Pergamon Press,  |c 1964. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International Series in Pure and Applied Mathematics ;  |v 48 
588 0 |a Publisher supplied information; title not viewed. 
505 0 |a Front Cover; Regular Figures; Copyright Page; Table of Contents; Preface; PART ONE: SYSTEMATOLOGY OF THE REGULAR FIGURES; CHAPTER I. PLANE ORNAMENTS; 1. Isometries; 2. Symmetry groups; 3. Groups with infinite unit cells; 4. Groups with finite unit cells; 5. Remarks; CHAPTERII. SPHERICAL ARRANGEMENTS; 6. Isometries in space; 7. The finite rotation groups; 8. The finite symmetry groups; 9. Groups of permutations; 10. The geometrical crystal classes; 11. Remarks; CHAPTERIII. HYPERBOLIC TESSELLATIONS; 12. The hyperbolic plane; 13. Hyperbolic trigonometry; 14. Hyperbolic tessellations; 15. Remarks 
505 8 |a CHAPTERIV. POLYHEDRA16. The nine regular polyhedra; 17. Semi-regular polyhedra; 18. Parallelohedra; 19. Remarks; CHAPTERV. REGULAR POLYTOPES; 20. Geometry in more than three dimensions; 21. The general regular polytope; 22. The convex regular polytopes; 23. Remarks; PART TWO: GENETICS OF THE REGULAR FIGURES; CHAPTERVI. FIGURES IN THE EUCLIDEAN PLANE; 24. Inequalities for polygons; 25. Packing and covering problems; 26. Isoperimetric problems in cell-aggregates; 27. Packings and coverings by non-congruent circles; 28. A stability problem for circle-packings; 29. Remarks 
505 8 |a CHAPTERVII. SPHERICAL FIGURES30. The isoperimetric property of the regular spherical polygons; 31. Shortest spherical net with meshes of equalarea; 32. An extremal distribution of great circles; 33. An inequality for star-tessellations; 34. A covering problem; 35. Distribution of the orifices on pollen-grains; 36. Remarks; CHAPTERVIII. PROBLEMS IN THE HYPERBOLIC PLANE; 37. Circle-packings and circle-coverings; 38. Packing and covering by horocycles; 39. An extremum property of the tessellations {p, 3}; 40. Remarks; CHAPTERIX. PROBLEMS IN 3-SPACE; 41. Volume estimates for polyhedra 
505 8 |a 42. Surface area and edge-curvature43. The isoperimetric problem for polyhedra; 44. Sphere-clouds; 45. Sphere-packings and sphere-coverings; 46. Honeycombs; 47. Remarks; CHAPTERX. PROBLEMS IN HIGHER SPACES; 48. On the volume of a polyhedron in non-Euclidean 3-space; 49. Extremum properties of the regular polytopes; 50. Sphere-packings and sphere-coverings in spaces of constant curvature; 51. Remarks; Postscript; Bibliography; Index 
520 |a Regular Figures concerns the systematology and genetics of regular figures. The first part of the book deals with the classical theory of the regular figures. This topic includes description of plane ornaments, spherical arrangements, hyperbolic tessellations, polyhedral, and regular polytopes. The problem of geometry of the sphere and the two-dimensional hyperbolic space are considered. Classical theory is explained as describing all possible symmetrical groupings in different spaces of constant curvature. The second part deals with the genetics of the regular figures and the inequalities fo. 
650 0 |a Symmetry. 
650 0 |a Transformations (Mathematics) 
650 0 |a Topology. 
650 0 |a Decoration and ornament. 
650 6 |a Sym�etrie.  |0 (CaQQLa)201-0031358 
650 6 |a Topologie.  |0 (CaQQLa)201-0001193 
650 6 |a D�ecoration et ornement.  |0 (CaQQLa)201-0001321 
650 7 |a Decoration and ornament  |2 fast  |0 (OCoLC)fst00889145 
650 7 |a Symmetry  |2 fast  |0 (OCoLC)fst01140811 
650 7 |a Topology  |2 fast  |0 (OCoLC)fst01152692 
650 7 |a Transformations (Mathematics)  |2 fast  |0 (OCoLC)fst01154653 
830 0 |a International series in pure and applied mathematics ;  |v 48. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080100586  |z Texto completo