Cargando…

Abelian groups /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fuchs, L�aszl�o
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, [1967, �1960]
Edición:[3rd ed.].
Colección:International Series of Monographs in Pure and Applied Mathematics, V.12.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn894772734
003 OCoLC
005 20231120111917.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 141107s1967 enk ob 000 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OPELS  |d N$T  |d E7B  |d EBLCP  |d DEBSZ  |d COO  |d OCLCQ  |d YDXCP  |d GZM  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 897132621  |a 898422092  |a 948809318 
020 |a 9781483280905  |q (electronic bk.) 
020 |a 148328090X  |q (electronic bk.) 
020 |z 0080092063 
020 |z 9780080092065 
035 |a (OCoLC)894772734  |z (OCoLC)897132621  |z (OCoLC)898422092  |z (OCoLC)948809318 
042 |a dlr 
050 4 |a QA171  |b .F8 1960 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.86 UKW 
084 |a SK 260  |2 rvk 
100 1 |a Fuchs, L�aszl�o. 
245 1 0 |a Abelian groups /  |c by L. Fuchs. 
250 |a [3rd ed.]. 
260 |a Oxford ;  |a New York :  |b Pergamon Press,  |c [1967, �1960] 
300 |a 1 online resource (367 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International Series of Monographs in Pure and Applied Mathematics, V.12 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2014.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2014  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |a Front Cover; Abelian Groups; Copyright Page; PREFACE; Table of Contents; TABLE OF NOTATIONS; CHAPTER I. BASIC CONCEPTS. THE MOST IMPORTANT GROUPS; 1. Notation and terminology; 2. Direct sums; 3. Cyclic groups; 4. Quasicyclic groups; 5. The additive group of the rationals; 6. The p-adic integers; 7. Operator modules; 8. Linear independence and rank; Exercises; CHAPTER II. DIRECT SUM OF CYCLIC GROUPS; 9. Free (abelian) groups; 10. Finite and finitely generated groups; 11. Direct sums of cyclic p-groups; 12. Subgroups of direct sums of cyclic groups; 13. Two dual criteria for the basis. 
505 8 |a 14. Further criteria for the existence of a basisExercises; CHAPTER III. DIVISIBLE GROUPS; 15. Divisibility by integers in groups; 16. Homomorphisms into divisible groups; 17. Systems of linear equations over divisible groups; 18. The direct summand property of divisible groups; 19. The structure theorem on divisible groups; 20. Embedding in divisible groups; Exercises; CHAPTER IV. DIRECT SUMMANDS AND PURE SUBGROUPS; 21. Direct summands; 22. Absolute direct summands; 23. Pure subgroups; 24. Bounded pure subgroups; 25. Factor groups with respect to pure subgroups. 
505 8 |a 26. Algebraically compact groups27. Generalized pure subgroups; 28. Neat subgroups; Exercises; CHAPTER V. BASIC SUBGROUPS; 29. Existence of basic subgroups. The quasibasis; 30. Properties of basic subgroups; 31. Different basic subgroups of a group; 32. The basic subgroup as an endomorphic image; Exercises; CHAPTER VI. THE STRUCTURE OF p-GROUPS; 33. p-groups without elements of infinite height; 34. Closed p-groups; 35. The Ulm sequence; 36. Zippin's theorem; 37. Ulm's theorem; 38. Construction of groups with a prescribed Ulm sequence; 39. Non-isomorphic groups with the same Ulm sequence. 
505 8 |a 40. Some applications41. Direct decompositions of p-groups; Exercises; CHAPTER VII. TORSION FREE GROUPS; 42. The type of elements. Groups of rank 1; 43. Indecomposable groups; 44. Torsion free groups over the p-adic integers; 45. Countable torsion free groups; 46. Completely decomposable groups; 47. Complete direct sums of infinite cyclic groups. Slender groups; 48. Homogeneous groups; 49. Separable groups; Exercises; CHAPTER VIII. MIXED GROUPS; 50. Splitting mixed groups; 51. Factor groups of free groups; 52. A characterization of arbitrary groups by matrices. 
505 8 |a 53. Groups over the p-adic integersExercises; CHAPTER IX. HOMOMORPHISM GROUPS AND ENDOMORPHISM RINGS; 54. Homomorphism groups; 55. Endomorphism rings; 56. The endomorphism ring of p-groups; 57. Endomorphism rings with special properties; 58. Automorphism groups; 59. Fully invariant subgroups; Exercises; CHAPTER X. GROUP EXTENSIONS; 60. Extensions of groups; 61. The group of extensions; 62. Induced endomorphisms of the group of extensions; 63. Structural properties of the group of extensions; Exercises; CHAPTER XI. TENSOR PRODUCTS; 64. The tensor product; 65. The structure of tensor products. 
650 0 |a Abelian groups. 
650 6 |a Groupes ab�eliens.  |0 (CaQQLa)201-0000038 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Abelian groups  |2 fast  |0 (OCoLC)fst00794345 
650 7 |a Abelsche Gruppe  |2 gnd  |0 (DE-588)4140988-7 
776 0 8 |i Print version:  |w (OCoLC)781421 
830 0 |a International Series of Monographs in Pure and Applied Mathematics, V.12. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080092065  |z Texto completo