Introduction to elementary particle theory
Introduction to Elementary Particle Theory details the fundamental concepts and basic principles of the theory of elementary particles. The title emphasizes on the phenomenological foundations of relativistic theory and to the strong interactions from the S-matrix standpoint. The text first covers t...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Ruso |
Publicado: |
Oxford, New York,
Pergamon Press
[1975]
|
Edición: | [1st ed.]. |
Colección: | International series of monographs in natural philosophy ;
v. 78. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Introduction to Elementary Particle Theory; Copyright Page; Table of Contents; PREFACE; AUTHOR'S PREFACE TO THE ENGLISH EDITION; TRANSLATOR'S PREFACE; NOMENCLATURE; PART I: INTRODUCTION: STATES OF ELEMENTARY PARTICLES ; CHAPTER 1. ELEMENTS OF RELATIVISTIC QUANTUM THEORY; 1.1. Homogeneity of space-time and the Poincar�e group; 1.2. Quantum mechanics and relativity; 1.3. Basis quantities; 1.4. Description of scattering. The S-matrix; CHAPTER 2. FOUNDATIONS OF PHENOMENOLOGICAL DESCRIPTION; 2.1. Interactions and internal symmetry; 2.2. Symmetry and particle classification.
- 2.3. Unstable particlesPART II: RELATIVISTIC KINEMATICS AND REFLECTIONS; CHAPTER 3. THE LORENTZ GROUP AND THE GROUP SL(2, c); 3.1. Second-order imimodiilar matrices and the Lorentz transformation; 3.2. Spinors; 3.3. Irreducible representations and generalized spinor analysis; 3.4. Direct products of representations and covariant Clebsch-Gordan coefficients; 3.5. Representations of the unitary group SU2; CHAPTER 4. THE QUANTUM MECHANICAL POINCAR�E GROUP; 4.1. Introductory remarks; 4.2. Transfoimations and momenta. The little group and the Wigner operator.
- 4.3. Unitary representations. Case m2> 0 4.4. Spinor functions and quantum fields for m2> 0; 4.5. Unitary representations in the case m = 0. Equations of motion; 4.6. Multi-particle states; CHAPTER 5. WAVE FUNCTIONS AND EQUATIONS OF MOTION FOR PARTICLES WITH ARBITRARY SPIN; 5.1. Wave functions, bilinear Hermitian forms, and equations of motion; 5.2. The Dirac equation; 5.3. 2(2J+ l)-component functions for spin J; 5.4� Particles with spin J = 1; 5.5. Rarita-Schwlnger wave functions; 5.6. Bargmann-Wigner wave functions; 5.7. The Duffin-Kemmer equation.