Cargando…

Wave fields in real media : wave propagation in anisotropic, anelastic, porous and electromagnetic media /

Authored by the internationally renowned Jos�e M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carcione, Jos�e M. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier Science, 2015.
Edición:Third edition.
Colección:Handbook of geophysical exploration. Seismic exploration ; 38
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media; Copyright; Contents; Dedication; Preface; About the Author; Basic Notation; Glossary of Main Symbols; Chapter 1: Anisotropic Elastic Media; 1.1 Strain-Energy Density and Stress-Strain Relation; 1.2 Dynamical Equations; 1.2.1 Symmetries and Transformation Properties; Symmetry Plane of a Monoclinic Medium; Transformation of the Stiffness Matrix; 1.3 Kelvin-Christoffel Equation, Phase Velocity and Slowness; 1.3.1 Transversely Isotropic Media.
  • 1.3.2 Symmetry Planes of an Orthorhombic Medium1.3.3 Orthogonality of Polarizations; 1.4 Energy Balance and Energy Velocity; 1.4.1 Group Velocity; 1.4.2 Equivalence Between the Group and Energy Velocities; 1.4.3 Envelope Velocity; 1.4.4 Example: Transversely Isotropic Media; 1.4.5 Elasticity Constants from Phase and Group Velocities; 1.4.6 Relationship Between the Slowness and Wave Surfaces; SH-Wave Propagation; 1.5 Finely Layered Media; 1.5.1 The Schoenberg-Muir Averaging Theory; Examples; 1.6 Anomalous Polarizations; 1.6.1 Conditions for the Existence of Anomalous Polarization.
  • 1.6.2 Stability Constraints1.6.3 Anomalous Polarization in Orthorhombic Media; 1.6.4 Anomalous Polarization in Monoclinic Media; 1.6.5 The Polarization; 1.6.6 Example; 1.7 The Best Isotropic Approximation; 1.8 Analytical Solutions; 1.8.1 2D Green Function; 1.8.2 3D Green Function; 1.9 Reflection and Transmission of Plane Waves; 1.9.1 Cross-Plane Shear Waves; Chapter 2: Viscoelasticity and Wave Propagation; 2.1 Energy Densities and Stress-Strain Relations; 2.1.1 Fading Memory and Symmetries of the Relaxation Tensor; 2.2 Stress-Strain Relation for 1D Viscoelastic Media.
  • 2.2.1 Complex Modulus and Storage and Loss Moduli2.2.2 Energy and Significance of the Storage and Loss Moduli; 2.2.3 Non-negative Work Requirements and Other Conditions; 2.2.4 Consequences of Reality and Causality; 2.2.5 Summary of the Main Properties; Relaxation Function; Complex Modulus; 2.3 Wave Propagation in 1D Viscoelastic Media; 2.3.1 Wave Propagation for Complex Frequencies; 2.4 Mechanical Models and Wave Propagation; 2.4.1 Maxwell Model; 2.4.2 Kelvin-Voigt Model; 2.4.3 Zener or Standard Linear Solid Model; 2.4.4 Burgers Model; 2.4.5 Generalized Zener Model; Nearly Constant Q.
  • 2.4.6 Nearly Constant-Q Model with a ContinuousSpectrum2.5 Constant-Q Model and Wave Equation; 2.5.1 Phase Velocity and Attenuation Factor; 2.5.2 Wave Equation in Differential Form: Fractional Derivatives; Propagation in Pierre Shale; 2.6 Equivalence Between Source and Initial Conditions; 2.7 Hysteresis Cycles and Fatigue; 2.8 Distributed-Order Fractional Time Derivatives; 2.8.1 The n Case; 2.8.2 The Generalized Dirac CombFunction; 2.9 The Concept of Centrovelocity; 2.9.1 1D Green Function and Transient Solution; 2.9.2 Numerical Evaluation of the Velocities; 2.9.3 Example.