|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn894349530 |
003 |
OCoLC |
005 |
20231120111839.0 |
006 |
m o d |
007 |
cr bn||||||abp |
007 |
cr bn||||||ada |
008 |
141102s1971 enka ob 100 0 eng d |
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCO
|d OPELS
|d N$T
|d EBLCP
|d HEBIS
|d DEBSZ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCL
|d OCLCO
|d YDXCP
|d OCLCQ
|d OCLCO
|d MERUC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|
066 |
|
|
|c (S
|
019 |
|
|
|a 893872945
|a 898772166
|a 1100942679
|
020 |
|
|
|a 9781483262482
|q (electronic bk.)
|
020 |
|
|
|a 1483262480
|q (electronic bk.)
|
020 |
|
|
|z 0123585023
|
020 |
|
|
|z 9780123585028
|
035 |
|
|
|a (OCoLC)894349530
|z (OCoLC)893872945
|z (OCoLC)898772166
|z (OCoLC)1100942679
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA374
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.353
|2 18
|
111 |
2 |
|
|a Symposium on the Numerical Solution of Partial Differential Equations
|n (2nd :
|d 1970 :
|c University of Maryland)
|
245 |
1 |
0 |
|a Numerical solution of partial differential equations - 2 :
|b S.Y.N.S.P.A.D.E. 1970 /
|c edited by Bert Hubbard.
|
260 |
|
|
|a New York ;
|a London :
|b Academic Press,
|c 1971.
|
300 |
|
|
|a 1 online resource (ix, 649 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2014.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2014
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
505 |
8 |
|
|6 880-01
|a 1. Introduction2. Approximation Theory in Rn; 3. Boundary Value Problems with Natural Boundary Conditions; 4. Boundary Value Problem with Natural Boundary Conditions and Singularities on the Boundary; 5. Boundary Value Problem with Dirichlet Boundary Conditions -- The Case of the Lipschitz Domain; 6. The Solution of the Dirichlet Problem by the Perturbed Variational Principle; 7. Computational Aspects and Numerical Experiments; REFERENCES; CHAPTER 3. ON THE NUMERICAL SOLUTION OF ELLIPTIC BOUNDARY VALUE PROBLEMS BY LEAST SQUARES APPROXIMATION OF THE DATA; 1. Introduction; 2. Preliminaries.
|
505 |
8 |
|
|a 3. Finite Dimensional Subspaces of Hk(R)4. Least Squares Methods for 2mth Order Boundary Value Problems; 5. Interface Problems -- Equations with Discontinuous Coefficients; 6. Examples; REFERENCES; CHAPTER 4. ALTERNATING-DIRECTION GALERKIN METHODS ON RECTANGLES; 1. Introduction; 2. An Alternating-Direction Galerkin Method for the Heat Equation on a Rectangle; 3. General Parabolic Equations; 4. Hyperbolic Problems; 5. Elliptic Problems; REFERENCES; CHAPTER 5. ON THE DIFFERENCE EQUATIONS FOR METEOROLOGICAL PREDICTION; 1. Introduction; 2. The ""Empirical"" Equations of Meteorological Prediction.
|
505 |
8 |
|
|a 3. Development of a Set of Complete Difference EquationsREFERENCES; CHAPTER 6. FURTHER DEVELOPMENTS IN THE APPROXIMATION THEORY OF EIGENVALUES; 1. Eigenvalue Problems for Linear Elliptic Systems; 2 . Upper Approximation of; REFERENCES; CHAPTER 7. NUMERICAL DESIGN OF TRANSONIC AIRFOILS; 1. Introduction; 2. Transonic Controversy and the Inverse Problem; 3. The Method of Complex Characteristics; 4. Continuation Around the Sonic Locus; 5. Construction and Properties of the Airfoils; REFERENCES; CHAPTER 8. ON THE NUMERICAL TREATMENT OF PARTIAL DIFFERENTIAL EQUATIONS BY FUNCTION THEORETIC METHODS.
|
505 |
8 |
|
|a 1. Introduction2. Boundary Value Problems: Analytic Methods; 3. Boundary Value Problems: Numerical Treatment; 4 . Nonlinear Equations in Two Independent Variables: The Dirichlet Problem; 5. Nonlinear Equations in Two Independent Variables: The Cauchy Problem; REFERENCES; CHAPTER 9. A NEW DIFFERENCE SCHEME FOR PARABOLIC PROBLEMS; 1. Introduction; 2. The Box Scheme; 3. Error Estimates; 4. Richardson Extrapolation; 5. Solution of the Difference Equations; REFERENCES; CHAPTER 10. SINGULARITIES IN INTERFACE PROBLEMS; 1. Introduction; 2. A Density Theorem in Two Dimensions.
|
520 |
|
|
|a Numerical Solution of Partial Differential Equations-II, Synspade 1970.
|
650 |
|
0 |
|a Differential equations, Partial
|x Numerical solutions
|v Congresses.
|
650 |
|
0 |
|a Differential equations, Partial
|x Numerical solutions
|x Congresses.
|
650 |
|
6 |
|a �Equations aux d�eriv�ees partielles
|0 (CaQQLa)201-0041240
|x Solutions num�eriques
|0 (CaQQLa)201-0041240
|x Congr�es.
|0 (CaQQLa)201-0378208
|
650 |
|
6 |
|a �Equations aux d�eriv�ees partielles
|0 (CaQQLa)201-0041240
|x Solutions num�eriques
|0 (CaQQLa)201-0041240
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Partial
|x Numerical solutions.
|2 fast
|0 (OCoLC)fst00893488
|
653 |
|
|
|a Partial differential equations
|a Numerical solution Conference proceedings
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
700 |
1 |
|
|a Hubbard, Bert.
|
776 |
0 |
8 |
|i Print version:
|w (DLC) 73137624
|w (OCoLC)16212573
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780123585028
|z Texto completo
|
880 |
0 |
|
|6 505-01/(S
|a Front Cover; Numerical Solution of Partial Differential Equations-II: Synspade 1970; Copyright Page; Table of Contents; CONTRIBUTORS; PREFACE; CHAPTER 1. SOME ASPECTS OF THE METHOD OF THE HYPERCIRCLE APPLIED TO ELLIPTIC VARIATIONAL PROBLEMS; Introduction; 1. Example of Conjugate Problems and a posteriori Estimates; 2. A posteriori Estimates and Conjugate Problems of Abstract Boundary Value Problems; 3. Approximations of the Spaces H₂m(Ω, D*) and H₂m(Ω, D*); 4. Approximation of Conjugate Boundary Value Problems; REFERENCES; CHAPTER 2. THE FINITE ELEMENT METHOD FOR ELLIPTIC DIFFERENTIAL EQUATIONS.
|