Cargando…

Readings in fuzzy sets for intelligent systems /

Readings in Fuzzy Sets for Intelligent Systems.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Dubois, Didier (Editor ), Prade, Henri M. (Editor ), Yager, Ronald R., 1941- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Mateo, California : Morgan Kaufmann, 1993.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893873857
003 OCoLC
005 20231120111841.0
006 m o d
007 cr cnu---unuuu
008 141027s1993 cau ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d OCLCF  |d YDXCP  |d EBLCP  |d IDEBK  |d DEBSZ  |d OCLCQ  |d DEBBG  |d AZK  |d OCLCQ  |d MERUC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 897646143  |a 961489215 
020 |a 9781483214504  |q (electronic bk.) 
020 |a 1483214508  |q (electronic bk.) 
020 |a 9781322469980 
020 |a 1322469989 
020 |z 9781558602571 
035 |a (OCoLC)893873857  |z (OCoLC)897646143  |z (OCoLC)961489215 
050 4 |a QA76.76.E95 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 0 0 |a Readings in fuzzy sets for intelligent systems /  |c edited by Didier Dubois and Henri Prade, Ronald R. Yager. 
264 1 |a San Mateo, California :  |b Morgan Kaufmann,  |c 1993. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Readings in Fuzzy Sets for Intelligent Systems; Copyright Page; Table of Contents; Acknowledgments; Chapter 1. Introduction; The Emergence of Fuzzy Sets and Possibility Theory; What Fuzzy Sets Are About; Fuzzy Sets Versus PossibilityDistributions; Degrees of Truth and IncompleteInformation; Possibility and Probability; Possibility Theory and Interval Analysis; Fuzzy Relations; Where Are Fuzzy Sets Useful?; Organization of the Readings; Acknowledgments; References; Appendix A:Papers by L.A. Zadeh since 1965; Appendix B: General English Books and Proceedings on Fuzzy Sets. 
505 8 |a Appendix C: Books on Applications of Fuzzy Sets to Pure MathematicsAppendix D: References on FuzzyHardwares; Chapter 2. Basic Notions in Fuzzy Set Theory; Introduction; Further Readings; FUZZY SETS; NOTATION, TERMINOLOGY, AND BASIC OPERATIONS; THE CONCEPT OF A FUZZY RESTRICTION AND TRANSLATION RULESFOR FUZZY PROPOSITIONS; REFERENCES; BIBLIOGRAPHY; REPRESENTATION THEOREMS FOR FUZZY CONCEPTS; 1 INTRODUCTION; 2 PRELIMINARIES; 3 THE GENERAL REPRESENTATION THEOREM; 4 REPRESENTATION THEOREM FOR L-TOPO-LOGICALSUBSPACES; 5 L-ALGEBRAICSUBSTRUCTURES; 6 CONCLUSIONS; REFERENCES. 
505 8 |a On Some Logical Connectives for Fuzzy Sets TheoryINTRODUCTION; 1. PRELIMINARIES ON FUZZY CONNECTIVES; 2. ON STRONG NEGATIONS AND DEMORGAN'S LAWS; 3. SOME LOGICAL PROPERTIES OFNONDISTRIBUTIVE CONNECTIVES; 4. FURTHER CHARACTERIZATION OF THECLASSICAL CONNECTIVES; REFERENCES; Symmetric Summation: A Class of Operationson Fuzzy Sets; I. COMPLEMENTARY SETS; II. SET COMBINATION; III. SYMMETRIC SUMS; IV. EXAMPLES; V. SUMMARY; ACKNOWLEDGMENT; REFERENCES; On Ordered Weighted Averaging AggregationOperators in Multicriteria Decisionmaking; INTRODUCTION; FORMULATING OF THE AGGREGATION PROBLEM. 
505 8 |a GENERAL ANDING AND ORING OPERATORSOWA OPERATORS; PROPERTIES OF OWA OPERATORS; QUANTIFIERS AND OWA OPERATORS; MEASURE OF ANDNESS AND ORNESS -- IN A GENERAL SETTING; BUILDING CONSISTENT OWA OPERATORS; INCLUDING UNEQUAL IMPORTANCES; CONCLUSION; REFERENCES; FUZZY POWER SETS AND FUZZY IMPLICATIONOPERATORS; 1. Towards a theory of fuzzy power sets; 2. Comparative semantics of fuzzy implication operators; 3. Height, plinth and crispness of fuzzy sets; 4. Fuzzy set-inclusions and equalities; 5. Dis joint ness of fuzzy sets; 6. A fuzzy set and its complement. 
505 8 |a 7. Conservation of crispness, versus the 'bootstrap effect'8. Conclusion; References; ON IMPLICATION AND INDISTINGUISHABELTTY IN THESETTING OF FUZZY LOGIC; 1. INTRODUCTION; 2. SOME PRELIMINARIES; 3.S-IMLICATIONS; 4.R-IMPLICATION; REFERENCES; A THEOREM ON IMPLICATION FUNCTIONSDEFINED FROM TRIANGULAR NORMS; 0� Introduction; 1. Background; 2. Theorem; 3. Proof; 4. Conclusion; References; FUZZY NUMBERS: AN OVERVIEW; ABSTRACT; I. INTRODUCTION; II. DEFINITIONS AND FUNDAMENTAL PRINCIPLES; III. THE CALCULUS OF FUZZY QUANTITIES WITH NONINTERACTIVEVARIABLES. 
520 |a Readings in Fuzzy Sets for Intelligent Systems. 
650 0 |a Expert systems (Computer science) 
650 0 |a Fuzzy sets. 
650 6 |a Syst�emes experts (Informatique)  |0 (CaQQLa)201-0124822 
650 6 |a Ensembles flous.  |0 (CaQQLa)201-0120669 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Expert systems (Computer science)  |2 fast  |0 (OCoLC)fst00918516 
650 7 |a Fuzzy sets  |2 fast  |0 (OCoLC)fst00936812 
700 1 |a Dubois, Didier,  |e editor. 
700 1 |a Prade, Henri M.,  |e editor. 
700 1 |a Yager, Ronald R.,  |d 1941-  |e editor. 
776 0 8 |i Print version:  |t Readings in fuzzy sets for intelligent systems.  |d San Mateo, Calif. : Morgan Kaufman Publishers, �1993  |z 1558602577  |w (DLC) 93035702  |w (OCoLC)28889801 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781483214504  |z Texto completo