Introduction to equilibrium analysis : variations on themes by Edgeworth and Walras /
Introduction to Equilibrium Analysis.
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
North-Holland Pub. Co. : American Elsevier Pub. Co.,
1976.
|
Colección: | Advanced textbooks in economics ;
v. 6. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Introduction to Equilibrium Analysis: Variations on themes by Edgeworth and Walras; Copyright Page; Preface; Table of Contents; Chapter 1. An introductory outline; 1. Introduction; 2. Basic example; 3. Improving bycooperation; 4. Second theme:Decentralization by prices; 5. TheCoincidence of two themes; 6. Conjuring trick; 7. Limit economies and the imortance of beinginsignificance; 8. From limits to limiting results; 9. Back to Walras; 10. Less well behaved individuals; 11. Forewarned is forearmed; Chapter 2. Exchange economies; 1. Introduction; 2. TheCommodity space.
- 3. Agents' characteristics4. Economies; 5. Appendix toch. 2; Chapter 3. The core of a game; 1. Introduction; 2. Balancedness; 3. Some Non-classicalexchange economies; 4. Appendix to ch. 3; Chapter 4. Large economies; 1. Introduction; 2. Prices and demand; 3. Walras equilibrium; 4. Economies with a continuum of agents; Chapter 5. Limit theorems for the core; 1. Limit theorem for replica economies; 2. Limit theorems for type economies; 3. Uniform boundedness of core allocations; 4. Asymptotic equal treatment for most; 5. Asymptotic equal treatment for all; 6. Proof of thelimit theorem 5.2.
- 7. The Emergenceof prices8. Alternative proof for section 6; Chapter 6. Existence of competitive equilibria; 1. Introduction; 2. Individual demand; 3. Total demand; 4. Existence of eqilibria: strongly convexpreferences; 5. Existence of equilibria for economies with convex preferences; 6. Equilibria without convexity of preferences; 7. Conclusions; 8. Appendix to ch. 6; Mathematical appendix I: Topological concepts in Rl; 1. Convergence in Rl; 2. Closed and open sets; Mathematical appendix II: Separation of convex sets; Mathematical appendix III: Continuous correspondences; 1. Introduction.
- 2. Upper hemi-continuous correspondences3. Lower hemi-continuous correspondences; 4. Continuous correspondences; Mathematical appendix IV: Fixed point theorems; List of mathematical symbols; References; Author index; Subject index.