Cargando…

Machine learning : proceedings of the seventh international conference (1990), University of Texas, Austin, Texas, June 21-23, 1990 /

Machine Learning Proceedings 1990.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores Corporativos: International Conference on Machine Learning University of Texas, Artificial Intelligence and Robotics Program (U.S.)
Otros Autores: Porter, Bruce, 1956-, Mooney, Raymond J. (Raymond Joseph)
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: San Mateo, Calif. : Morgan Kaufmann Publishers, �1990.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893872970
003 OCoLC
005 20231120111840.0
006 m o d
007 cr cnu---unuuu
008 141027s1990 caua ob 101 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OCLCO  |d IDEBK  |d N$T  |d E7B  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCO  |d DEBBG  |d OCLCE  |d MERUC  |d OCLCQ  |d IDB  |d STF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VT2  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d S2H  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 893874966  |a 897647154  |a 988746200  |a 1100961356  |a 1156332351 
020 |a 9781483298580  |q (electronic bk.) 
020 |a 1483298582  |q (electronic bk.) 
020 |z 1558601414 
020 |z 9781558601413 
035 |a (OCoLC)893872970  |z (OCoLC)893874966  |z (OCoLC)897647154  |z (OCoLC)988746200  |z (OCoLC)1100961356  |z (OCoLC)1156332351 
042 |a dlr 
050 4 |a Q325.5  |b .M34 1990eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 22 
084 |a 54.72  |2 bcl 
111 2 |a International Conference on Machine Learning  |n (7th :  |d 1990 :  |c University of Texas) 
245 1 0 |a Machine learning :  |b proceedings of the seventh international conference (1990), University of Texas, Austin, Texas, June 21-23, 1990 /  |c editor/workshop chairs, Bruce Porter and Raymond Mooney ; sponsors, Office of Naval Research, Artificial Intelligence and Robotics Program [and others]. 
264 1 |a San Mateo, Calif. :  |b Morgan Kaufmann Publishers,  |c �1990. 
300 |a 1 online resource (v, 427 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a "Proceedings of the Seventh International Conference on Machine Learning"--Cover 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Knowledge acquisition from examples usinmg maximal representation learning / S. Arun Kumar and S. Yegneshwar -- KBG: a knowledge based generalizer / G. Bisson -- Performance analysis of a probabalistic inductive learning system / K.C.C. Chan and A.K.C. Wong -- A comparative study of ID3 and backpropagation for English text-to-speech mapping / T.G. Dietterich, H. Hild, and G. Bakiri -- Learning from data with bounded inconsistency / H. Hirsh -- Conceptual set covering: improving fit-and-split algorithms / C.M. Kadie -- Incremental learning of rules and meta-rules / M. Schoenauer and M. Sebag -- An incremental method for finding multivariate splits for decision trees / P.E. Utgoff and C.E. Brodley -- Incremental induction of topologically minimal trees / W. Van de Velde. 
505 0 |a 2. A rational analysis of categorization / J.R. Anderson and M. Matessa -- Search control, utility, anf concept induction / B. Carlson, J. Weinberg, and D. Fisher -- Graph clustering and model learning by data compression / J. Segen -- 3. An analysis of representation shift in concept learning / W.E. Cohen -- Learning procedures by environment-driven constructive induction / D.V. Hume -- Beyond inversion of resolution / C. Rouveirol and J. Puget -- 4. Genetic programming / H. de Garis -- Improving the performance of genetic algorithms in automated discovery of parameters / N. Kadaba and K.E. Nygard -- Using genetic alogorithms to learn disjunctive rules from examples / R. Andrew McCallum and K.A. Spackman -- NEWBOOLE: a fast GBML system / P. Bonelli, A. Parodi, S. Sen and S. Wilson. 
505 0 |a 5. Learning functions in k-DNF from reinforcement / L.P. Kaelbling -- Is learning rate a good performance criterion for learning? / C. Sammut and J. Cribb -- Active perception and reinforcement learning / S.D. Whitehead and D.H. Ballard -- 6. Learning plans for competetive domains / S.L. Epstein -- Explanations of empirically derived reactive plans / D.F. Gordon and J.J. Grefenstette -- Learning and enforcement: stabilizing environments to facilitate activity / K.J. Hammond -- Simulation-assisted learning by competioion: effects of noise differences between training model and target environment / C.L. Ramsey, A.C. Schultz, and J.J. Grefenstette -- Integrated architecture for learning, planning, and reacting based on approximating dynamic programming / R.S. Sutton. 
505 0 |a 7. Reducing real-world failures of approximate explanation-based rules / S.W. Bennett -- Correcting and extending domain knowledge using outside guidance / J.E. Laird, M. Hucka, E.S. Yager, and C.M. Tuck -- Acquisition of dynamic control knowledge for a robotic manipulator / A.W. Moore -- Feature extraction and clustering of tactile impressions with connectionist models / M. Thint and P.P. Wang -- 8. Generalizing the order of goals as an approach to generalizing number / H. Bostrom -- Learning approximate control rules of high utility / W.W. Cohen -- Applying abstraction and simplification to learn in intratible domains / N.S. Fann -- Explanation-based learning with incomplete theories: a three-step approach / J. Genest, S. Matwin, and B. Plante -- Using abductive recovery of failed proofs for problem solving by analogy / Y. Kodratoff. 
505 0 |a Issues in the design of operator composition systems / S. Minton -- Incremental learning of explanation patterns and their indices / A. Ram -- 9. Integrated learning in a real domain / F. Bergadano, A. Giordana, L. Saitta, D. DeMarchi, and F. Brancadori -- Incremental version-space merging / H. Hirsch -- Average case analysis of conjunctive learning algorithms / M.J. Pazzani and W. Sarrett -- ILS: a framework for multi-paradigmatic learning / B. Silver, W. Frawley, G. Iba, J. Vittal, and K. Bradford -- An integrated framework of inducing rules from examples -- Y. WU, S. Wanf, and Q. Zhou -- 10. Adaptive parsing: a general method for learning idiosyncratic grammars / J.F. Lehman -- A comparison of learning techniques in second language learning / S.L. Lytinen and C.E. Moon -- Learning string patterns and tree patterns from examples -- K. Ko, A. Marron, and W. Tzeng. 
505 0 |a Learning with discrete multi-valued neurons / Z. Obradovic and I. Parberry -- 11. The general utility problems in machine learning / L.B. Holder -- A robust approach to numeric discovery / B. Nordhausen and P. Langley -- More results on the complexity of knowlegge base refinement: belief networks / M. Valtorta. 
588 0 |a Print version record. 
520 |a Machine Learning Proceedings 1990. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
650 0 |a Machine learning  |v Congresses. 
650 6 |a Apprentissage automatique  |0 (CaQQLa)201-0131435  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 1 7 |a Machine-learning.  |2 gtt 
650 7 |a Apprentissage automatique  |x Congr�es.  |2 ram 
653 0 |a Machine learning  |a Congresses 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a Porter, Bruce,  |d 1956- 
700 1 |a Mooney, Raymond J.  |q (Raymond Joseph) 
710 2 |a Artificial Intelligence and Robotics Program (U.S.) 
776 0 8 |i Print version:  |a International Conference on Machine Learning (7th : 1990 : University of Texas).  |t Machine learning  |z 1558601414  |w (DLC) 90004763  |w (OCoLC)21599358 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781558601413  |z Texto completo