Cargando…

Foundations of measurement /

From the Foreword is infinite in multitude; and I mean by the sand not only that which exists about Syracuse and the rest of Sicily but also that which is found in every region whether inhabited or unhabited. Again there are some who, without regarding it as infinite, yet think that no number has be...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Luce, Duncan R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Academic Press, 1990.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893872920
003 OCoLC
005 20231120111841.0
006 m o d
007 cr cnu---unuuu
008 141027s1990 nyua ob 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d STF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 893875025  |a 898422442 
020 |a 9781483295046  |q (electronic bk.) 
020 |a 1483295044  |q (electronic bk.) 
020 |z 0124254039 
020 |z 9780124254039 
035 |a (OCoLC)893872920  |z (OCoLC)893875025  |z (OCoLC)898422442 
050 4 |a QA465  |b .F68 1990eb 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.801  |2 22 
245 0 0 |a Foundations of measurement /  |c R. Duncan Luce, et al. 
264 1 |a New York :  |b Academic Press,  |c 1990. 
300 |a 1 online resource (356 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 338-345). 
520 |a From the Foreword is infinite in multitude; and I mean by the sand not only that which exists about Syracuse and the rest of Sicily but also that which is found in every region whether inhabited or unhabited. Again there are some who, without regarding it as infinite, yet think that no number has been named which is great enough to exceed its multitude. And it is clear that they who hold this view, if they imagined a mass made up of sand in other respects as large as the mass of the earth, including in it all the seas and the hollows of the earth filled up to a height equal to that of the highest mountains, would be many times further still from recognizing that any number could be expressed which exceeded the multitude of the sand so taken. But I will try to show you by means of geometrical proofs, which you will be able to follow, that, of the numbers named by me and given in the work which I sent to Zeuxippus, some exceed not only the number of the mass of sand equal in magnitude to the earth filled up in the way described, but also that of a mass equal in magnitude to the universe. 
588 0 |a Print version record. 
505 0 |a Front Cover; Representation, Axiomatization, and Invariance; Copyright Page; Dedication; Table of Contents; Preface; Acknowledgments; Chapter 18. Overview; 18.1 NONADDITIVE REPRESENTATIONS (CHAPTER 19); 18.2 SCALE TYPES (CHAPTER 20); 18.3 AXIOMATIZATION (CHAPTER 21); 18.4 INVARIANCE AND MEANINGFULNESS (CHAPTER 22); Chapter 19. Nonadditive Representations; 19.1 INTRODUCTION; 19.2 TYPES OF CONCATENATION STRUCTURE; 19.3 REPRESENTATIONS OF PCSs; 19.4 COMPLETIONS OF TOTAL ORDERS AND PCSs; 19.5 PROOFS ABOUT CONCATENATION STRUCTURES; 19.6 CONNECTIONS BETWEEN CONJOINT AND CONCATENATION STRUCTURES. 
505 8 |a 19.7 REPRESENTATIONS OF SOLVABLE CONJOINT AND CONCATENATION STRUCTURES19.8 PROOFS; 19.9 BISYMMETRY AND RELATED PROPERTIES; EXERCISES; Chapter 20. Scale Types; 20.1 INTRODUCTION; 20.2 HOMOGENEITY, UNIQUENESS, AND SCALE TYPE; 20.3 PROOFS; 20.4 HOMOGENEOUS CONCATENATION STRUCTURES; 20.5 PROOFS; 20.6 HOMOGENEOUS CONJOINT STRUCTURES; 20.7 PROOFS; EXERCISES; Chapter 21. Axiomatization; 21.1 AXIOM SYSTEMS AND REPRESENTATIONS; 21.2 ELEMENTARY FORMALIZATION OF THEORIES; 21.3 DEFINABILITY AND INTERPRETABILITY; 21.4 SOME THEOREMS ON AXIOMATIZABILITY; 21.5 PROOFS; 21.6 FINITE AXIOMATIZABILITY. 
505 8 |a 21.7 THE ARCHIMEDEAN AXIOM21.8 TESTABILITY OF AXIOMS; EXERCISES; Chapter 22. Invariance and Meaningfulness; 22.1 INTRODUCTION; 22.2 METHODS OF DEFINING MEANINGFUL RELATIONS; 22.3 CHARACTERIZATIONS OF REFERENCE INVARIANCE; 22.4 PROOFS; 22.5 DEFINABILITY; 22.6 MEANINGFULNESS AND STATISTICS; 22.7 DIMENSIONAL INVARIANCE; 22.8 PROOFS; 22.9 REPRISE: UNIQUENESS, AUTOMORPHISMS, AND CONSTRUCTABILITY; EXERCISES; References; Author Index; Subject Index. 
650 0 |a Physical measurements. 
650 0 |a Measurement. 
650 6 |a Mesures physiques.  |0 (CaQQLa)201-0093355 
650 6 |a Mesure.  |0 (CaQQLa)201-0012867 
650 7 |a measuring.  |2 aat  |0 (CStmoGRI)aat300053578 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Measurement  |2 fast  |0 (OCoLC)fst01715944 
650 7 |a Physical measurements  |2 fast  |0 (OCoLC)fst01062700 
700 1 |a Luce, Duncan R. 
776 0 8 |i Print version:  |t Foundations of measurement  |z 0124254039  |w (DLC) 72154365  |w (OCoLC)21572733 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124254039  |z Texto completo