|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn893872917 |
003 |
OCoLC |
005 |
20231120111838.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141027s1993 caua ob 101 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d OCLCO
|d E7B
|d N$T
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCL
|d OCLCO
|d MERUC
|d OCLCQ
|d IDB
|d STF
|d OCLCQ
|d VT2
|d VLY
|d LUN
|d OCLCQ
|d INARC
|d OCLCQ
|d S2H
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 893875045
|a 897647174
|a 1156340918
|a 1162589382
|a 1175714375
|
020 |
|
|
|a 9781483298627
|q (electronic bk.)
|
020 |
|
|
|a 1483298620
|q (electronic bk.)
|
020 |
|
|
|z 1558603077
|
020 |
|
|
|z 9781558603073
|
035 |
|
|
|a (OCoLC)893872917
|z (OCoLC)893875045
|z (OCoLC)897647174
|z (OCoLC)1156340918
|z (OCoLC)1162589382
|z (OCoLC)1175714375
|
050 |
|
4 |
|a Q325.5
|b .I57 1993eb
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.31
|2 22
|
084 |
|
|
|a 54.72
|2 bcl
|
084 |
|
|
|a SS 1993
|2 rvk
|
111 |
2 |
|
|a International Conference on Machine Learning
|n (10th :
|d 1993 :
|c University of Massachusetts)
|
245 |
1 |
0 |
|a Machine learning :
|b proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993 /
|c Paul Utgoff, ML93 chair.
|
264 |
|
1 |
|a San Mateo, Calif. :
|b Morgan Kaufmann Pub.,
|c �1993.
|
300 |
|
|
|a 1 online resource (v, [7], 348 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
505 |
0 |
|
|a The Evolution of Genetic Algorithms: Towards Massive Parallelism / Shumeet Baluja -- ELENA: A Bottom-Up Learning Method / Pierre Brezellec and Henry Soldano -- Addressing the Selective Superiority Problem: Automatic Algorithm/Model Class Selection / Carla E. Brodley -- Using Decision Trees to Improve Case-Based Learning / Claire Cardie -- GALOIS: An order-theoretic approach to conceptual clustering / Claudio Carpineto and Giovanni Romano -- Multitask Learning: A Knowledge-Based Source of Inductive Bias / Richard A. Caruana -- Using Qualitative Models to Guide Inductive Learning / Peter Clark and Stan Matwin -- Automating Path Analysis for Building Causal Models from Data / Paul R. Cohen, Adam Carlson, Lisa Ballesteros and Robert St. Amant -- Constructing Hidden Variables in Bayesian Networks via Conceptual Clustering / Dennis Connolly -- Learning Symbolic Rules Using Artificial Neural Networks / Mark W. Craven and Jude W. Shavlik.
|
505 |
0 |
|
|a Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network / Andrea Pohoreckyj Danyluk and Foster John Provost -- Concept Sharing: A Means to Improve Multi-Concept Learning / Piew Datta and Dennis Kibler -- Discovering Dynamics / Saso Dzeroski and Ljupco Todorovski -- Synthesis of Abstraction Hierarchies for Constraint Satisfaction by Clustering Approximately Equivalent Objects / Thomas Ellman -- SKICAT: A Machine Learning System for Automated Cataloging of Large Scale Sky Surveys / Usama M. Fayyad, Nicholas Weir and S. Djorgovski -- Learning From Entailment: An Application to Propositional Horn Sentences / Michael Frazier and Leonard Pitt -- Efficient Domain-Independent Experimentation / Yolanda Gil -- Learning Search Control Knowledge for Deep Space Network Scheduling / Jonathan Gratch, Steve Chien and Gerald DeJong -- Learning procedures from interactive natural language instructions / Scott B. Huffman and John E. Laird.
|
505 |
0 |
|
|a Generalization under Implication by Recursive Anti-unification / Peter Idestam-Almquist -- Supervised learning and divide-and-conquer: A statistical approach / Michael I. Jordan and Robert A. Jacobs -- Hierarchical Learning in Stochastic Domains: Preliminary Results / Leslie Pack Kaelbling -- Constraining Learning with Search Control / Jihie Kim and Paul S. Rosenbloom -- Sealing Up Reinforcement Learning for Robot Control / Long-Ji Lin -- Overcoming Incomplete Perception with Utile Distinction Memory / R. Andrew McCallum -- Explanation Based Learning: A Comparison of Symbolic and Neural Network Approaches / Tom M. Mitchell and Sebastian B. Thrun -- Combinatorial optimization in inductive concept learning / Dunja Mladenic -- Decision Theoretic Subsampling for Induction on Large Databases / Ron Musick, Jason Catlett and Stuart Russell -- Learning DNF Via Probabilistic Evidence Combination / Steven W. Norton and Haym Hirsh.
|
505 |
0 |
|
|a Explaining and Generalizing Diagnostic Decisions / Paul O'Rorke, Yousri El Fattah and Margaret Elliott -- Combining Instance-Based and Model-Based Learning / J.R. Quinlan -- Data Mining of Subjective Agricultural Data / R. Bharat Rao, Thomas B. Voigt and Thomas W. Fermanian -- Lookahead Feature Construction for Learning Hard Concepts / Harish Ragavan and Larry Rendell -- Adaptive NeuroControl: How Black Box and Simple can it be / Jean Michel Renders, Hugues Bersini and Marco Saerens -- An SE-tree based Characterization of the Induction Problem / Ron Rymon -- Density-Adaptive Learning and Forgetting / Marcos Salganicoff -- Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning / Jeffrey C. Schlimmer -- Compiling Bayesian Networks into Neural Networks / Eddie Schwalb -- A Reinforcement Learning Method for Maximizing Undiscounted Rewards / Anton Schwartz -- ATM Scheduling with Queuing Delay Predictions / Daniel B. Schwartz.
|
505 |
0 |
|
|a Online Learning with Random Representations / Richard S. Sutton and Steven D. Whitehead -- Learning from Queries and Examples with Tree-structured Bias / Prasad Tadepalli -- Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents / Ming Tan -- Better Learners Use Analogical Problem Solving Sparingly / Kurt Van Lehn and Randolph M. Jones.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Machine Learning Proceedings 1993.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Machine learning
|v Congresses.
|
650 |
|
6 |
|a Apprentissage automatique
|0 (CaQQLa)201-0131435
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
650 |
1 |
7 |
|a Machine-learning.
|2 gtt
|
650 |
|
7 |
|a Apprentissage automatique
|x Congr�es.
|2 ram
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|0 (CStmoGRI)aatgf300027316
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
700 |
1 |
|
|a Utgoff, Paul E.,
|d 1951-
|
776 |
0 |
8 |
|i Print version:
|a International Conference on Machine Learning (10th : 1993 : University of Massachusetts).
|t Machine learning
|z 1558603077
|w (OCoLC)29321956
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781558603073
|z Texto completo
|