Cargando…

Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993 /

Machine Learning Proceedings 1993.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: International Conference on Machine Learning University of Massachusetts
Otros Autores: Utgoff, Paul E., 1951-
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: San Mateo, Calif. : Morgan Kaufmann Pub., �1993.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893872917
003 OCoLC
005 20231120111838.0
006 m o d
007 cr cnu---unuuu
008 141027s1993 caua ob 101 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OCLCO  |d E7B  |d N$T  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCO  |d MERUC  |d OCLCQ  |d IDB  |d STF  |d OCLCQ  |d VT2  |d VLY  |d LUN  |d OCLCQ  |d INARC  |d OCLCQ  |d S2H  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 893875045  |a 897647174  |a 1156340918  |a 1162589382  |a 1175714375 
020 |a 9781483298627  |q (electronic bk.) 
020 |a 1483298620  |q (electronic bk.) 
020 |z 1558603077 
020 |z 9781558603073 
035 |a (OCoLC)893872917  |z (OCoLC)893875045  |z (OCoLC)897647174  |z (OCoLC)1156340918  |z (OCoLC)1162589382  |z (OCoLC)1175714375 
050 4 |a Q325.5  |b .I57 1993eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 22 
084 |a 54.72  |2 bcl 
084 |a SS 1993  |2 rvk 
111 2 |a International Conference on Machine Learning  |n (10th :  |d 1993 :  |c University of Massachusetts) 
245 1 0 |a Machine learning :  |b proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993 /  |c Paul Utgoff, ML93 chair. 
264 1 |a San Mateo, Calif. :  |b Morgan Kaufmann Pub.,  |c �1993. 
300 |a 1 online resource (v, [7], 348 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and indexes. 
505 0 |a The Evolution of Genetic Algorithms: Towards Massive Parallelism / Shumeet Baluja -- ELENA: A Bottom-Up Learning Method / Pierre Brezellec and Henry Soldano -- Addressing the Selective Superiority Problem: Automatic Algorithm/Model Class Selection / Carla E. Brodley -- Using Decision Trees to Improve Case-Based Learning / Claire Cardie -- GALOIS: An order-theoretic approach to conceptual clustering / Claudio Carpineto and Giovanni Romano -- Multitask Learning: A Knowledge-Based Source of Inductive Bias / Richard A. Caruana -- Using Qualitative Models to Guide Inductive Learning / Peter Clark and Stan Matwin -- Automating Path Analysis for Building Causal Models from Data / Paul R. Cohen, Adam Carlson, Lisa Ballesteros and Robert St. Amant -- Constructing Hidden Variables in Bayesian Networks via Conceptual Clustering / Dennis Connolly -- Learning Symbolic Rules Using Artificial Neural Networks / Mark W. Craven and Jude W. Shavlik. 
505 0 |a Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network / Andrea Pohoreckyj Danyluk and Foster John Provost -- Concept Sharing: A Means to Improve Multi-Concept Learning / Piew Datta and Dennis Kibler -- Discovering Dynamics / Saso Dzeroski and Ljupco Todorovski -- Synthesis of Abstraction Hierarchies for Constraint Satisfaction by Clustering Approximately Equivalent Objects / Thomas Ellman -- SKICAT: A Machine Learning System for Automated Cataloging of Large Scale Sky Surveys / Usama M. Fayyad, Nicholas Weir and S. Djorgovski -- Learning From Entailment: An Application to Propositional Horn Sentences / Michael Frazier and Leonard Pitt -- Efficient Domain-Independent Experimentation / Yolanda Gil -- Learning Search Control Knowledge for Deep Space Network Scheduling / Jonathan Gratch, Steve Chien and Gerald DeJong -- Learning procedures from interactive natural language instructions / Scott B. Huffman and John E. Laird. 
505 0 |a Generalization under Implication by Recursive Anti-unification / Peter Idestam-Almquist -- Supervised learning and divide-and-conquer: A statistical approach / Michael I. Jordan and Robert A. Jacobs -- Hierarchical Learning in Stochastic Domains: Preliminary Results / Leslie Pack Kaelbling -- Constraining Learning with Search Control / Jihie Kim and Paul S. Rosenbloom -- Sealing Up Reinforcement Learning for Robot Control / Long-Ji Lin -- Overcoming Incomplete Perception with Utile Distinction Memory / R. Andrew McCallum -- Explanation Based Learning: A Comparison of Symbolic and Neural Network Approaches / Tom M. Mitchell and Sebastian B. Thrun -- Combinatorial optimization in inductive concept learning / Dunja Mladenic -- Decision Theoretic Subsampling for Induction on Large Databases / Ron Musick, Jason Catlett and Stuart Russell -- Learning DNF Via Probabilistic Evidence Combination / Steven W. Norton and Haym Hirsh. 
505 0 |a Explaining and Generalizing Diagnostic Decisions / Paul O'Rorke, Yousri El Fattah and Margaret Elliott -- Combining Instance-Based and Model-Based Learning / J.R. Quinlan -- Data Mining of Subjective Agricultural Data / R. Bharat Rao, Thomas B. Voigt and Thomas W. Fermanian -- Lookahead Feature Construction for Learning Hard Concepts / Harish Ragavan and Larry Rendell -- Adaptive NeuroControl: How Black Box and Simple can it be / Jean Michel Renders, Hugues Bersini and Marco Saerens -- An SE-tree based Characterization of the Induction Problem / Ron Rymon -- Density-Adaptive Learning and Forgetting / Marcos Salganicoff -- Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning / Jeffrey C. Schlimmer -- Compiling Bayesian Networks into Neural Networks / Eddie Schwalb -- A Reinforcement Learning Method for Maximizing Undiscounted Rewards / Anton Schwartz -- ATM Scheduling with Queuing Delay Predictions / Daniel B. Schwartz. 
505 0 |a Online Learning with Random Representations / Richard S. Sutton and Steven D. Whitehead -- Learning from Queries and Examples with Tree-structured Bias / Prasad Tadepalli -- Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents / Ming Tan -- Better Learners Use Analogical Problem Solving Sparingly / Kurt Van Lehn and Randolph M. Jones. 
588 0 |a Print version record. 
520 |a Machine Learning Proceedings 1993. 
546 |a English. 
650 0 |a Machine learning  |v Congresses. 
650 6 |a Apprentissage automatique  |0 (CaQQLa)201-0131435  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 1 7 |a Machine-learning.  |2 gtt 
650 7 |a Apprentissage automatique  |x Congr�es.  |2 ram 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a Utgoff, Paul E.,  |d 1951- 
776 0 8 |i Print version:  |a International Conference on Machine Learning (10th : 1993 : University of Massachusetts).  |t Machine learning  |z 1558603077  |w (OCoLC)29321956 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781558603073  |z Texto completo