MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893872916
003 OCoLC
005 20231120111838.0
006 m o d
007 cr cnu---unuuu
008 141027s1994 caua ob 101 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OCLCO  |d N$T  |d YDXCP  |d EBLCP  |d NLGGC  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d MERUC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d INARC  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 893875044  |a 898422487 
020 |a 9781483298603  |q (electronic bk.) 
020 |a 1483298604  |q (electronic bk.) 
020 |z 1558603328 
020 |z 9781558603325 
035 |a (OCoLC)893872916  |z (OCoLC)893875044  |z (OCoLC)898422487 
050 4 |a Q375  |b .C66 1994eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3  |2 22 
111 2 |a Conference on Uncertainty in Artificial Intelligence  |n (10th :  |d 1994 :  |c University of Washington) 
245 1 0 |a Uncertainty in artificial intelligence :  |b proceedings of the Tenth Conference (1994) : July 29-31, 1994 /  |c Tenth Conference on Uncertainty in Artificial Intelligence, University of Washington, Seattle ; edited by Ramon Lopez de Mantaras, David Poole. 
264 1 |a San Francisco, Calif. :  |b Morgan Kaufmann Publishers,  |c [1994] 
264 4 |c �1994 
300 |a 1 online resource (vi, 616 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Uncertainty in Artificial Intelligence; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Ending-based Strategies for Part-of-speech Tagging; Abstract; 1 INTRODUCTION; 2 BACKGROUND; 3 THE EXPERIMENTS; 4 RESULTS; 5 DISCUSSION AND FUTUREWORK; Acknowledgments; References; Chapter 2. An evaluation of an algorithm for inductive learning of Bayesian belief networks using simulated data sets; Abstract; 1 INTRODUCTION; 2 METHODS; 3 RESULTS; 4 CONCLUSIONS; Acknowledgements; References; Appendix I. 
505 8 |a Chapter 3. Probabilistic Constraint Satisfaction with Non-Gaussian NoiseAbstract; 1 INTRODUCTION; 2 MULTICOMPONENT ALGORITHM; 3. EXPERIMENTS AND RESULTS; 4 DISCUSSION; 5 RELATED WORK; 6 CONCLUSIONS; Acknowledgments; References; Chapter 4. A Bayesian Method Reexamined; Abstract; 1 INTRODUCTION; 2 THE K2 METRIC; 3 EXAMPLES AND DISCUSSION; 4 ANALYSIS; 5 CONCLUSION; Acknowledgments; References; Chapter 5. Laplace's Method Approximations for Probabilistic Inference in Belief Networks with Continuous Variables; Abstract; 1 Introduction. 
505 8 |a 2 Laplace's Method and Approximations for Probabilistic Inference3 Implementation Issues and Limitations; 4 An Application to a Medical Inference Problem; 5 Final Considerations; Acknowlegements; References; Chapter 6. Generating New Beliefs From Old; Abstract; 1 Introduction; 2 Technical preliminaries; 3 The three methods; 4 Discussion; References; Chapter 7. Counterfactual Probabilities: Computational Methods, Bounds and Applications; Abstract; 1 INTRODUCTION; 2 NOTATION; 3 BOUNDS ONCOUNTERFACTUALS; 4 APPLICATION TO CLINICAL TRIALS WITH IMPERFECT COMPLIANCE. 
505 8 |6 880-01  |a 4 Experimental ResultsRemark.; References; Chapter 10. Possibility and necessity functions over non-classical logics; Abstract; 1 Introduction; 2 Non-classical necessity and possibility functions; 3 Application to reasoning with uncertain and inconsistent information; 4 Conclusion; 5 References; Chapter 11. Exploratory Model Building; Abstract; 1 Introduction; 2 The Scenario-Building Process; 3 Probabilistic Knowledge; 4 The Dependency Relation; 5 Structure of an Imagined Context; 6 Constructing Preferred Contexts; 7 Conclusion; Acknowledgment; References. 
650 0 |a Uncertainty (Information theory)  |v Congresses. 
650 0 |a Artificial intelligence  |v Congresses. 
650 6 |a Incertitude (Th�eorie de l'information)  |0 (CaQQLa)201-0003328  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 6 |a Intelligence artificielle  |0 (CaQQLa)201-0008626  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Uncertainty (Information theory)  |2 fast  |0 (OCoLC)fst01160838 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a L�opez de M�antaras, Ramon,  |d 1952- 
700 1 |a Poole, David L.  |q (David Lynton),  |d 1958- 
776 0 8 |i Print version:  |a Conference on Uncertainty in Artificial Intelligence (10th : 1994 : University of Washington).  |t Uncertainty in artificial intelligence  |z 1558603328  |w (OCoLC)31251390 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781558603325  |z Texto completo 
880 8 |6 505-01/(S  |a 5 APPLICATIONS TO LIABILITY JUDGMENT6 CONCLUSION; Acknowledgements; References; Chapter 8. Modus Ponens Generating Function in the Class of Λ-valuations of Plausibility; Abstract; 1 STABILITY OF DECISIONS IN INFERENCE PROCEDURES; 2 STRICT MONOTONICITY OF CONCLUSIONS; 3 Λ-VALUATIONS OF PLAUSIBILITY; 4 NEGATION OPERATION ON F; 5 MODUS PONENS GENERATING FUNCTIONS ON F; 6 EXAMPLE AND APPLICATIONS; Acknowledgements; References; Chapter 9. Approximation Algorithms for the Loop Cutset Problem; Abstract; 1 Introduction; 2 The Loop Cutset Problem; 3 Algorithms For The WVFS problem.