Cargando…

Introduction to machine learning /

A textbook suitable for undergraduate courses in machine learning.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kodratoff, Yves (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Francés
Publicado: San Mateo, CA : Morgan Kaufmann, 1988.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893679687
003 OCoLC
005 20231120111829.0
006 m o d
007 cr cnu---unuuu
008 141024s1988 caua ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d YDXCP  |d EBLCP  |d IDEBK  |d DEBSZ  |d OCLCQ  |d UMI  |d DEBBG  |d COO  |d MERUC  |d OCLCQ  |d CEF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 897645820  |a 931874287 
020 |a 9780080509303  |q (electronic bk.) 
020 |a 0080509304  |q (electronic bk.) 
020 |z 155860037X 
020 |z 9781558600379 
035 |a (OCoLC)893679687  |z (OCoLC)897645820  |z (OCoLC)931874287 
041 1 |a eng  |h fre 
050 4 |a Q325.5  |b .K6213 1988eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 23 
100 1 |a Kodratoff, Yves,  |e author. 
240 1 0 |a Le�cons d'apprentissage symbolique automatique.  |l English 
245 1 0 |a Introduction to machine learning /  |c Yves Kodratoff, Research Director, French National Scientific Research Council. 
264 1 |a San Mateo, CA :  |b Morgan Kaufmann,  |c 1988. 
300 |a 1 online resource (v, 298 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 287-294) and index. 
500 |a Translation of: Le�cons d'apprentissage symbolique automatique. 
520 |a A textbook suitable for undergraduate courses in machine learning. 
505 0 |a Front Cover; Introduction to Machine Learning; Copyright Page; Table of Contents; Foreword and Acknowledgements; Chapter 1. Why Machine Learning and Artificial Intelligence? The Contribution of Artificial Intelligence to Learning Techniques; 1 HISTORICAL SKETCH; 2 VARIOUS SORTS OF LEARNING; Chapter 2. Theoretical Foundations for Machine Learning; 0 THEORETICAL FOUNDATIONS FOR THEORY-HATERS; 1 CLAUSES; 2 UNIFICATION; 3 RESOLUTION AND INFERENCE ON A SET OF CLAUSES; 4 THE KNUTH-BENDIX COMPLETION ALGORITHM; Chapter 3. Representation of Complex Knowledge by Clauses. 
505 8 |a 1 SOME EXAMPLES OF LOGICAL KNOWLEDGE REPRESENTATION2 THE TRANSFORMATION OF A GIVEN SENTENCE INTO A THEOREM; 3 REPRESENTATION OF A HIERARCHY DURING RESOLUTION; 4 REPRESENTATION BY TERNARY QUANTIFIED TREES -- Chapter 4. Representation of Knowledge About Actions and the Addition of New Rules to a Knowledge Base; 1 TRUTH MAINTENANCE; 2 PREDICATES IN ACTION MODE / CHECKING MODE; 3 MAIN RULES AND AUXILIARY RULES; 4 ORGANIZATION OF THE PROGRAM FOR THE REPRESENTATION OF ACTIONS; 5 THE CASE OF A NEW RULE HAVING THE SAME PREMISE AS AN OLD ONE; 6 NEW RULE MORE SPECIFIC THAN AN OLD ONE. 
505 8 |a 7 COMBINATION OF RULES8 GENERALIZATION OF RULES; 9 RULES FOR INFERENCE CONTROL; Chapter 5. Learning by Doing; 1 THE PROBLEM; 2 VERSION SPACES [Mitchell 1982] SEEN AS FOCUSSING; 3 APPLICATION TO RULE ACQUISITION; 4 LEARNING BY TRIAL AND ERROR; Chapter 6. A Formal Presentation of Version Spaces; 1 DIFFERENT DEFINITIONS OF GENERALIZATION; 2 VERSION SPACES; Chapter 7. Explanation-Based Learning; 1 INDUCTIVE VERSUS DEDUCTIVE LEARNING; 2 INTUITIVE PRESENTATION OF EBL; 3 GOAL REGRESSION; 4 EXPLANATION-BASED GENERALIZATION; 5 EXPLANATION-BASED LEARNING. 
505 8 |a Chapter 8. Learning by Similarity Detection The Empirical Approach1 GENERAL DEFINITIONS; 2 DESCRIPTION OF THE WHOLE EXAMPLE; 3 RECOGNITION; 4 SPARSENESS AND THE SELECTION CRITERIA FOR A GOOD FUNCTION; 5 THE PROCEDURE OF EMPTYING THE INTERSECTIONS -- 6 CREATION OF RECOGNITION FUNCTIONS; 7 RULES OF GENERALIZATION; 8 GENERATION OF RECOGNITION FUNCTIONS; 9 APPLICATION TO SOYBEAN PATHOLOGY; 10 APPLICATION TO AN ALGORITHM FOR CONCEPTUAL CLUSTERING; Chapter 9. Learning by Similarity Detection The 'Rational' Approach; 1 KNOWLEDGE REPRESENTATION. 
505 8 |a 2 DESCRIPTION OF A RATIONAL GENERALIZATION ALGORITHM3 USING AXIOMS AND IDEMPOTENCE; 4 A DEFINITION OF GENERALIZATION; 5 USE OF NEGATIVE EXAMPLES; CONCLUSION; Chapter 10. Automatic Construction of Taxonomies Techniques for Clustering; 1 A MEASURE OF THE AMOUNT OF INFORMATION ASSOCIATED WITH EACH DESCRIPTOR; 2 APPLICATION OF DATA ANALYSIS; 3 CONCEPTUAL CLUSTERING; Chapter 11. Debugging and Understanding in Depth The Learning of Micro-Worlds; 1 RECOGNITION OF MICRO-WORLDS; 2 DETECTION OF LIES; Chapter 12. Learning by Analogy; 1 A DEFINITION OF ANALOGY; 2 WINSTON'S USE OF ANALOGY. 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a MACHINE LEARNING.  |2 nasat 
650 7 |a TEACHING MACHINES.  |2 nasat 
650 7 |a KNOWLEDGE REPRESENTATION.  |2 nasat 
650 7 |a KNOWLEDGE BASES (ARTIFICIAL INTELLIGENCE)  |2 nasat 
650 7 |a ARTIFICIAL INTELLIGENCE.  |2 nasat 
650 7 |a LEARNING.  |2 nasat 
776 0 8 |i Print version:  |a Kodratoff, Yves.  |s Le�cons d'apprentissage symbolique automatique. English.  |t Introduction to machine learning  |z 155860037X  |w (DLC) 88046077  |w (OCoLC)20725307 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080509303  |z Texto completo