Cargando…

Exploring university mathematics, 2 : lectures given at Bedford College, London. /

Exploring University Mathematics 2.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores Corporativos: Easter Conference in Mathematics Bedford College, Bedford College
Otros Autores: Hardiman, N. J. (Editor )
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, 1968.
Edición:First edition.
Colección:Commonwealth and international library. Mathematics division.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Exploring University Mathematics 2; Copyright Page; Table of Contents; EDITORIAL; CHAPTER 1. FOURIER SERIES AND THE ISOPERIMETRIC PROBLEM; Introduction; Fourier series; The isoperimetric problem; CHAPTER 2. THE MATHEMATICS OF NIGHT SHINING CLOUDS; 1. The earth's atmosphere at a height of 80-100 km (50-60 miles); 2. Night shining clouds; 3. Stability; 4. Thermal instability; 5. The turbopause; 6. Fall of meteoric dust (still atmosphere); 7. The dust density below the turbopause; 8. The full theory; CHAPTER 3. NUMBERS MADE TO MEASURE; REFERENCES FOR FURTHER READING.
  • CHAPTER 4. SPECIAL RELATIVITY: A QUESTION OF TIME RECKONINGThe velocity of light; The Einstein velocity formula; Einstein's assumption; Assigning times and distances; The assigning function; Whitrow's deduction of Einstein's postulate; REFERENCE FOR FURTHER READING; CHAPTER 5. WALLPAPER PATTERNS; 1. Introduction; 2. Isometric transformations of a plane; 3. The restriction of the rotations in a wallpaper; 4. Lattices; 5. The positions of the rotation centres of a wallpaper; 6. Classification of wallpapers by rotations; 7. Conclusion; Appendix 1; Appendix 2; REFERENCES FOR FURTHER READING.
  • CHAPTER 6. THE MATHEMATICS OF GAMBLINGIntroduction; Statement of problem; Both players having infinite capital; Both players with finite capital; Length of game; Diffusion; Recurrence paradox; REFERENCES FOR FURTHER READING; CHAPTER 7. DIFFERENTIAL EQUATIONS; 1. Introduction; 2. Integration as the reverse of differentiation; 3. General differential equations; 4. Graphical methods of obtaining properties of solutions; 5. General analysis in the phase plane; REFERENCE FOR FURTHER READING.